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Préface

Le onzi�eme volume des Cahiers du Centre de logique est une collection

d'articles concernant la d�e�nissabilit�e en arithm�etique et la calculabi-

lit�e, et, plus particuli�erement, la d�ecidabilit�e de certaines extensions de

l'arithm�etique de Presburger.

L'id�ee de ce volume est n�ee pendant l'ann�ee acad�emique 1995{1996, ann�ee

o�u je donnai �a Bruxelles un s�eminaire sur la d�ecidabilit�e en arithm�etique.

La premi�ere partie de ces expos�es �etait consacr�ee �a des travaux r�ecents

(publi�es en 1993) par Bateman, Jockush et Woods sur la d�ecidabilit�e avec

un pr�edicat pour les nombres premiers. Ces travaux contenaient aussi la

premi�ere preuve publi�ee d'un important crit�ere de d�ecidabilit�e dû �a Se-

menov. La seconde partie de ce s�eminaire fut consacr�ee �a un survol de

plusieurs articles importants publi�es par Semenov dans les ann�ees sep-

tante et quatre-vingt, concernant la d�ecidabilit�e de certaines extensions

de l'arithm�etique de Presburger. Ces expos�es furent suivis de nombreuses

discussions.

Pendant cette même p�eriode, plusieurs participants du s�eminaire tra-

vaillaient sur les interactions entre la d�e�nissabilit�e et la d�ecidabilit�e en

arithm�etique. Le pr�esent volume contient une partie de ces travaux.

Ce volume s'ouvre sur une contribution de A. Maes. Il y fait une relec-

ture personnelle des travaux de A. L. Semenov sur certaines extensions de

l'arithm�etique de Presburger; il met particuli�erement en lumi�ere la �lia-

tion des m�ethodes utilis�ees avec celles de M. Presburger dans sa c�el�ebre

preuve de la d�ecidabilit�e de la th�eorie des naturels avec l'addition.



L'article suivant est une courte contribution par Th. Lavendhomme et

A. Maes. Les auteurs y donnent une nouvelle preuve d'un r�esultat de

M. Bo�a sur l'ind�ecidabilit�e de la th�eorie du premier ordre des naturels

avec l'addition et un pr�edicat pour les nombres premiers d'une progression

arithm�etique.

Dans le troisi�eme article, M. Margenstern et L. Pavlotska��a d�eveloppent

la notion de fonctions calculables par une machine de Turing sur un en-

semble donn�e de mots et montrent que cette notion est tr�es d�ependante

de la notion de calcul choisie, en particulier pour les machines de Turing

universelles.

Finalement le volume se ferme sur une contribution de Fr. Point. Elle

�etudie des extensions de l'arithm�etique de Presburger li�ees �a certains

syst�emes de num�erations (dits de Bertrand). Par des m�ethodes mod�ele-

th�eoriques, elle obtient plusieurs r�esultats d'�elimination (relative) des quan-

ti�cateurs et de d�ecidabilit�e pour ces extensions de l'arithm�etique de Pres-

burger.

Ce volume a �et�e r�ealis�e avec le soutien du Centre national de recherches de

logique. Je remercie les auteurs pour leurs contributions ainsi que D. Dzierz-

gowski qui a pris en charge la r�ealisation mat�erielle de ce volume.

Chr. Michaux,

Universit�e de Mons-Hainaut,

Novembre 1999.



Preface

The eleventh volume of the Cahiers du Centre de logique is a collection of

contributions to the study of de�nability in arithmetics and computabil-

ity; special emphasis is put on the decidability of some extensions of Pres-

burger arithmetic.

During years 1995{1996 I gave a seminar on decidability in arithmetics.

The �rst part of these lectures was devoted to recent work (published in

1993) by Bateman, Jockush andWoods on decidability with a predicate for

the prime natural numbers. This paper also contains the �rst written proof

of an important decidability criterium (due to Semenov). The second part

of my lectures surveys several papers published by Semenov during the 70's

and 80's. They dealt with certain extensions of Presburger arithmetic.

These lectures were followed by numerous discussions and bore the idea

to have this volume.

At that time several participants to the seminar worked on the interactions

between decidability and arithmetics. This volume contains part of these

works.

In the �rst of these articles, A. Maes revisits A.L. Semenov's work on

some extensions of Presburger arithmetic. He sheds a particular light

on the �liation between Semenov's methods and the celebrated proof by

Presburger that the theory of natural numbers with addition is decidable.

The next contribution, due to T. Lavendhomme and A. Maes, provides



a new proof of a recent result by M. Bo�a on the undecidability of Pres-

burger arithmetic enriched with a predicate for the prime numbers of an

arithmetical progression.

In the third paper M. Margenstern and L. Pavlotska��a introduce the notion

of a function computable by a Turing machine on a �xed set of words.

They show that this notion is very dependent on the notion of computation

which has been chosen, in particular for universal Turing machines.

F. Point, in the last contribution to this volume studies extension of Pres-

burger arithmetic closely related to Bertrand numeration systems. By

model-theoretic methods she proves several (relative) quanti�er elimina-

tion and decidability results.

This volume has been realized with the support of the Centre national de

recherches de logique. I want to thank the authors for their contributions

together with D. Dzierzgowski who formatted this volume.

C. Michaux,

Universit�e de Mons-Hainaut,

November 1999.
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Cahiers du Centre de logique
Volume 11

Revisiting Semenov's Results about
Decidability of Extensions of
Presburger Arithmetic

by

A. Maes
1

Universit�e de Mons-Hainaut

1. Introduction

The aim of this paper is to give a di�erent sight on some of Semenov's re-

sults [10]. These extend and precise classical results about the decidability

of arithmetic theories.

Langford [5] shows that the theory of the structure h!;S;<; 0i is decidable
(the theory of the natural numbers with the unary function `successor' 2,

the order relation and the constant 0). This is proved by showing that

this theory admits quanti�ers elimination (QE) (see [4, x3.2]).
Presburger [8] shows that the theory of the structure h!;S;+; <; 0i is
decidable as well. Although this theory does not admit QE, it is interde-

�nable with the theory of the structure h!;S;+; <;�2;�3; : : : ; 0i, where
�n is the binary relation of congruence modulo n 2 N, and this last theory
admits QE.

Semenov [10] considers several possible extensions of these results. First,

1: Aspirant du Fonds national belge de la recherche scienti�que.

2: The successor function maps x onto x+ 1.



12 A. MAES

given a set P of unary predicates, he gives a necessary and suÆcient

condition such that the theory of the structure h!;S;<; 0;Pi admits QE.
Moreover, he precises those sets P such that this theory is decidable. His

characterization uses the notion of almost-periodicity de�ned in Section 2.

The proof of his result, given in Section 3, is some kind of generalization

of Presburger's proof: in order to remove an existential quanti�er acting

on an open formula, it suÆces to check the compatibility of `bounds' as

well as the satisfaction of the formula on a segment of �xed length. An

example of predicate is given in Appendix A such that the theory of the

corresponding structure is undecidable but admits QE 3.

Semenov also considers a non-almost-periodic in�nite predicate R and

wonders about the decidability of the theories of structures like h!;S;<;
R; 0i and h!;S;+; <;R; 0i. Given such a predicate, and in order to answer
these questions, we �rst expand our language: we de�ne a larger structure

built on two domains (both being !), one of them containing the elements

of R, the other being used for `indexing' these elements. Let T<
R

(resp.

T
+
R
) represent the theory on this new structure. We show in Section 4

(resp. 5) that whenever R satis�es certain conditions, we may link the

decidability of T<
R
(resp. T+

R
) to that of the `index-theory' (a single-domain

`subtheory' of T<
R

(resp. T+
R
)). Using the previous characterization, we

obtain the decidability of this `index-theory', implying that of T<
R

(resp.

T
+
R
). We �nally show in Section 6 how to link these results back to the

initial problem about h!;S;<;R; 0i and h!;S;+; <;R; 0i.

Although everything lies in [10], this paper tries to give a di�erent ap-

proach by formalizing these two-domain structures and gives complete

proofs of Semenov's results.

As further reading, we may cite another paper by Semenov [11] where sim-

ilar results are drawn for extension of Presburger arithmetic with unary

functions. More recently, Bateman, Jockusch and Woods [1] shown that

the linear case of Schinzel's Hypothesis implies the undecidability of the

�rst order theory of h!; +; P i (see also [6] in this Cahier). Finally, Cob-

ham's and Semenov's theorems ([3] and [9]) give other examples of meth-

ods of de�nability and of recognizability. See [7] to have a recent proof

these results.

3: This will emphasize the notion of e�ectiveness.
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2. Almost Periodicity

Let us introduce the notion of almost-periodicity for words and predicates.

Basically, we say that an in�nite wordW on a given alphabet 4 L (we write

W 2 L
!) is almost-periodic if it satis�es the following property: for any

�nite word w on L (we write w 2 L
�), if w appears in�nitely often as

subword of W , then the distance between two consecutive occurrences of

w in W is bounded.

Notation. Given an in�nite word on an alphabet L, say W = c1c2 : : : 2
L
!, and given two natural numbers 0 6 x 6 y, we denote by W [x; y] the

�nite subword cxcx+1 : : : cy�1cy. We also de�ne W [x;1[ in the obvious

way.

We denote the length of a �nite word w by jwj.

Definition 1. Let W 2 L! be an in�nite word. We say that W is almost-

periodic (a-p) if and only if, for any �nite word w 2 L
�, there exists

a natural number �w such that

I either w does not appear in W [�w;1[,

I or for any x 2 N, w appears in W [x; x+�w].

If W is an almost-periodic word, then we say that W is e�ectively

almost-periodic (e-a-p) if there exists an algorithm providing �w for

any given word w 2 L�.

We say that �w is an almost-period of w in W . Notice that any natural

number greater than �w is an almost-period as well.

Definition 2. We extend this notion to unary predicates on N: we say

that a predicate P � N is (e�ectively) almost-periodic if and only if

so is its characteristic word WP 2 f0; 1g! de�ned by

8x 2 N WP [x; x] = `1', P (x)

Example 3. Any (ultimately) periodic word W is almost-periodic.

4: Practically, our alphabet will be L = f0; 1g and words will be characteristic words

of predicates.
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Indeed, suppose W is periodic and let � be its period (the case where

W is ultimately periodic is very similar). A word w appearing in W in

position x 2 N will also appear in position x + �; x + 2�; : : : so that any

subword of W of length jwj + � will contain a copy of w. Thus we may

take �w = jwj+ �.

Example 4. Thue-Morse word is obtained as `limit' of the iteration

I t0 = `0'

I ti is made out of ti�1 by replacing each symbol `0' with `01' and each

`1' with `10'.

So Thue-Morse word starts with 0110100110010110 : : :

We show in Appendix A that this word is almost-periodic.

See Appendix A for other examples of almost-periodic words, as well as

for an example of non-e�ectively almost-periodic word.

We extend the notion of almost-periodicity to sets of words by requiring

the existence of an almost-period when searching simultaneously on �nitely

many of these words:

Definition 5. We say that a set of in�nite words W = fWi j i 2 Ig on an

alphabet L forms an almost-periodic system if, for any �nite sequence

(Wi1
; : : : ;Win

) of words ofW , and any �nite sequence (w1; : : : ; wn) of

�nite words of L�, there exists a natural number � such that

I either there is no x > � such that wj = Wij
[x; x + jwj j � 1] for

all j,

I or for any x 2 N, there exists a y such that x 6 y 6 x+� and

wj =Wij
[y; y + jwj j � 1] for all j.

Denote by
Wi1
� � �

Win

the in�nite word (seen as a word on L
n) obtained

by `stacking' the words Wi1
; : : : ;Win

. The previous condition just

consists in requiring the word
Wi1
� � �

Win

to be almost-periodic.
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The system is e�ectively almost-periodic if there exists an algorithm

providing � for any choice of n; i1; : : : ; in and w1; : : : ; wn.

Definition 6. Again, we extend this notion to sets of unary predicates in

the obvious way.

Example 7. The set E = f� �m c j c;m 2 N; c < m 6= 0; 1g of congruences
modulo m forms an a-p system.

This comes from the fact that a word obtained by stacking elements of

E is periodic (a period is the lowest common multiple of the m's of the

words forming it).

Remark 8. Basic properties of almost-periodic systems of predicates are:

I Any subset of an a-p system still is an a-p system.

I They may be closed by boolean operations, that is, for any predicates

P1; P2 of an a-p system P ,

P [ fP1 _ P2g, P [ fP1 ^ P2g and P [ f:P1g

still form an a-p system 5.

This is clear for `^' from the de�nition. `:' comes from the fact that

for any word w 2 f0; 1g�w appears somewhere in W:P1 =WP1
if and

only if w appears at the same place in WP1
. (We denote by W the

word W where every `0' has been changed into a `1' and conversely).

This implies the result for `_'. 2

I They may be closed by translations, that is, for any predicate P of an

a-p system P and for any integer c,

P [ fP+cg

still forms an a-p system 6, where P+c is the unary predicate de�ned

by

P
+c(x), x > �c ^ P (x+ c).

5: As the condition for a-p systems only requires to be satis�ed on �nite sets of

predicates, we see that the boolean closure of P is indeed an a-p system.

6: The same remark applies: fP+c j P 2 P; c 2 Zg is also an a-p system.
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Indeed, the characteristic word of P+c is the characteristic word of P

whose the c �rst symbols have been removed (when c > 0) or in front

of which jcj symbols `0' have been added (when c < 0).

Example: if P = 10111110111110 : : :

P
+2 = 111110111110 : : :

P
�2 = 0010111110111110 : : :

Using this, it is easy to see that `extended systems' are a-p: in order

to �nd an almost-period for a word

u =

�
u11 : : : u1m

un1 : : : unm

�
2 (f0; 1gn)�

in the characteristic word of
P
+c1
1
� � �

P
+cn
n

, it suÆces to look in P1
� � �

Pn

for an almost-

period of the `incomplete' word v obtained from u by shifting the ith

line by ci units (to the right when ci > 0, to the left when ci < 0,

1 6 i 6 n) 7.

Let M be the set of all words of (f0; 1gn)� of length jvj that coincide
with v where v is de�ned. Remark that there are �nitely many such

words. For each word ~v 2 M , there exists a ~v-almost-period �~v in
P1
� � �

Pn

(which can be e�ectively found whenever P is e-a-p). So � =

max~v2M f�~vg is an almost-period for all ~v 2 M . This � is suitable

as almost-period of v in P1
� � �

Pn

and thus as almost-period of u in
P
+c1
1
� � �

P
+cn
n

.

Remark 9. We shall work on theories of structures with the order relation

and (at least) the successor function. Given a set of predicate P (not

necessarily an a-p system), we shall consider its closure by translations

P 0. The structures h!;S;<; 0;Pi and h!;S;<; 0;P 0i are interde�nable

since any P+c 2 P is de�nable using P 2 P , S and < by

P
+c(x) , P (S : : : S| {z }

c times

x) if c > 0,

, 9x0(S : : : S| {z }
jcj times

x
0 = x ^ P (x0)) if c < 0.

7: For instance, any almost-period for u =
�
11

10

�
in P

+1

1

P
�2
2

is an almost-period for v =
�
: : : 11

10 : : :

�
in P1

P2

and conversely.
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3. Quantifiers Elimination and
Almost-Periodicity

We now get to the following question: given a set of unary predicates

P = fPi j i 2 Ig, does the theory of the structure h!;S;<; 0;Pi admit
Quanti�er Elimination?

As explained above (see Remark 9), we shall suppose that P is closed by

translations.

Theorem 10. Let P be a set of unary predicates de�ned on !, closed by

translations. Then the theory T of the structure h!;S;<; 0;Pi admits

Quanti�ers Elimination if and only if P is an almost-periodic system.

Moreover, whenever this is the case, T is decidable if and only if P is

an e�ectively almost-periodic system of decidable predicates.

Proof. | We �rst show that if P is an a-p system, then T admits QE.

Then we show the link between the decidability of T and the e�ectiveness

of the almost-periodicity of P . Finally, we show why the fact that T

admits QE implies that P is an a-p system.

First step: if P is an a-p system, then T admits QE.

In order to proof the �rst step, it suÆces to show that we are able to

eliminate the quanti�er from any formula of the form

9x '(x; x1; : : : ; xl)
where ' is an conjunctive open formula and x1; : : : ; xl are variables di�er-

ing from x.

First, let us precise the notations and simplify the general form of con-

junctive open formul�.

By �x we denote the variables x1; : : : ; xl appearing in ' and di�ering from

x (the quanti�ed variable). By �(�x) (resp.  (�x)) we denote a term (resp.

a formula) in which only appear variables of �x.

Terms are expressions of the form S
n0, Snx and Snxi, with n 2 N and

xi 2 �x.
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An atomic formula is any expression of the form �1 = �2, �1 < �2 or P (�1)

where �1 and �2 are terms and P 2 P .
Of course, �1 = �2, :(�1 = �2) and :(�1 < �2) are de�nable by positive

formul� using `S' and `<'. Thus we may suppose ' only contains non-

negated comparisons.

Without loss of generality, we may suppose that P is closed by negations.

Indeed, using Remark 8, we see that P is (e-)a-p if and only if its closure

by negations is (e-)a-p.

Thus we just have to take into account formul� of the form �1 < �2 and

P (�).

However, we temporarily enlarge our language in order to use `extended

terms': we introduce terms like S�n0 and S�nxi where n 2 N and xi 2 �x

(remember x is not a variable of �x). It is obvious that `extended compar-

isons' are always equivalent to some usual comparison 8, and the same is

true for predicates of P as this system is closed by translations.

Now, any formula ' can be written as a conjunction 9

^
a2A

(�a(�x) < x) ^
^
b2B

(x < �b(�x)) ^
^
c2C

Pc(x) (1)

where A;B;C are �nite indexing sets, �a and �b are extended terms for

any a 2 A and b 2 B, and Pc 2 P for any c 2 C. Notice that the terms

�a (resp. �b) give lower (resp. upper) bounds on x.

We now show how to transform the formula 9x'(x; �x) into an equivalent

open formula.

(a) Suppose we have no predicate Pc, that is, C = ?.

Then we eliminate the quanti�er exactly in the same way as when

studying the structure h!;S;<; 0i: a solution for the formula (1) exists
if and only if there is some `space' between upper and lower bounds,

that is if and only if these two conditions are both satis�ed:

8: For instance, S�nx1 < S
m
x2 is equivalent to x1 < S

n+m
x2.

9: Of course, atomic formul� not containing x may be moved outside the action of

the quanti�er. Moreover, formul� like Sn1x < S
n2
x are equivalent to Sn10 < S

n20.
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I the maximum lower bound +1 (if any) is strictly lower than the

minimum upper bound (if any),

I the minimum upper bound (if any) is strictly positive.

This can be expressed by the open formula^
a2A
b2B

(S�a(�x) < �b(�x)) ^
^
b2B

(S0 < �b(�x)). (2)

(b) Suppose C 6= ?.

We now need to �nd some integer x between the upper and lower

bounds such that
V
c2C Pc(x) is satis�ed. Fortunately, the almost-

periodicity of P tells us that there exists some � such that it suÆces to

test the � �rst possible values: either one of them satis�es
V
c2C Pc(x)

or this formula is always false. Here, � is an almost-period for the

word 1
� � �

1
in the word P1

� � �

PC

.

Practically, given a lower bound ��; � 2 A, we test all the conditions
on �� +1; : : : ; �� +� and whether these values are positive. Since all

the �� + 1 might be negative, we also test the condition on 0; : : : ;�

which would then be the � �rst possible values. So we get the following

formula _
i=1:::�
�2A

�
0 6 S

i
�� ^

^
a2A

�a < S
i
��

^
^
b2B

S
i
�� < �b ^

^
j=1:::r

Pj(S
i
��)
�

_
_

i=0:::��1

�^
a2A

�a < S
i0)

^
^
b2B

S
i0 < �b ^

^
j=1:::r

Pj(S
i0)
�
:

(3)

As we said before, any `extended formula' appearing in (3) may be written

back as a usual formula. We then have an open formula equivalent to the

initial 9x'(x; �x), and this concludes the quanti�er elimination.
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Second step: link between the decidability of T and the e�ectiveness of

the almost-periodicity of P .

When P is an e-a-p system, each � we need can be e�ectively obtained.

If P is also a system of decidable predicates, then it is obvious we have

a decidable theory: the satisfaction of a sentence can be checked just by

computation of the quanti�er-free equivalent form.

Conversely, if P is an a-p system and the theory of h!;S;<; 0;Pi is de-
cidable, then P is e-a-p:

For any p 2 P , we may easily code the condition of the occurrence of a

�nite word u = u0 : : : ul 2 f0; 1g� at position x in the word WP by the

formula ^
j=0:::l

(:)jP (Sjx)

where (:)j means that the negation symbol is present if and only if

uj = `0'.

Using this formulation, given a word

u =

�
u10 : : : u1l

un0 : : : unl

�
2 (f0; 1gn)� ,

given some predicates P1; : : : ; Pn 2 P and given a natural number m > l,

we write the following sentence 'm

8x
� _
i=0:::m�l

^
j=0:::l
k=1:::n

(:)kjPk(Si+jx)
�

_ 8x
�
x > S

m0! :
^

j=0:::l
k=1:::n

(:)kjPk(Sjx)
� (4)

which expresses that m is an almost-period for the word u in P1
� � �

Pn

(again,

(:)kj means that the negation symbol is present if and only if ukj = `0').

We may e�ectively �nd an almost-period for u by deciding the sentences

'l+1; 'l+2; : : : until we �nd a true one. This algorithm stops since P is a-p

and since only �nitely many natural numbers are not an almost-period

for u.
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Third step: any set P of unary predicates such that the theory T of the

structure h!;S;<; 0;Pi admits QE is an almost-periodic system.

For a contradiction, suppose we have a word u 2 (f0; 1gn)� of length l and
some predicates P1; : : : ; Pn 2 P such that u appears in�nitely often in P1

� � �

Pn

but such that there exist arbitrarily large segments of P1� � �

Pn

not containing u.

Let '(x; y) be the formula expressing that x < y and that u does not

appear in the segment [x; y] of P1� � �

Pn

:

x < y ^ 8z (x < z ^ Slz < y) ! :
^

j=0:::l�1
k=1:::n

(:)kjPk(Sjz):

As the theory T admits QE, '(x; y) is equivalent to an open formula

 (x; y). The atomic subformul� of  are of three possible types: those

which contain neither x nor y, those which contain either x or y, and those

which contain both x and y.

These last ones are necessarily comparisons. They are of the form S
n1x <

S
n2y or Sn1y < S

n2x. Let Æ be the maximum of the n1 + n2's. There

are in�nitely many couples (a; b) such that both a+Æ < b and  (a; b) are

satis�ed (otherwise we would have a contradiction with the choice of u).

As  is built with �nitely many atomic formul�, it is possible to �nd two

pairs of numbers (a; b) and (a0; b0) such that the following three conditions

are satis�ed:

(a) a+ Æ < b < a
0 and a0 + Æ < b

0,

(b) any atomic formula of  is satis�ed on (a; b) if and only if it is satis�ed

on (a0; b0),

(c) u does appear in the segment [b; a0] of P1� � �

Pn

.

a b a
0

b
0

�� �� �� ��

no u no u

�� ��

u somewhere

dist > Æ 

� -
dist > Æ 

� -
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Thanks to condition (a) and to the choice of Æ , any comparison appearing

in  gets the same truth value on (a; b), on (a0; b0) and on (a; b0).

Obviously, we have the same behaviour for atomic formul� which contain

neither x nor y.

Now, if y does not appear in an atomic formula � of  , then the truth

value of � is the same on (a; b) and on (a; b0).

Similarly, if � does not contain the variable x, then its truth value is the

same on (a0; b0) and on (a; b0), and using condition (b), it is the same on

(a; b) as well.

Since  (a; b) is true and since any atomic formula of  is satis�ed on (a; b)

if and only if it is satis�ed on (a; b0),  (a; b0) has to be true. However, this

tell us u does not appear in the segment [b; a0] of P1� � �

Pn

, but this contradicts

condition (b). This concludes the proof of Theorem 10 2

4. Decidability, Index Function, Successor and
Almost-Periodicity

In order to study structures like h!;S;<;R; 0i or h!; +; <;R; 0; 1i, where
R is a non-almost-periodic in�nite predicate on N, we shall consider larger

structures, built on two domains, one of them being `at the level of the ele-

ments of R', the other one being used to index these elements. The results

of this section and of the next one aim to study these larger structures

and to show, in certain cases, that their theories admit a property like

QE, in this case, that they are `partially existential' (see De�nition 11).

We shall then study the links with the initial structures in order to know

about their decidability. However, the structures we are going to consider

now are a bit more general than what we shall need later.

We �rst study the structures of the form h!;S;<;R; 0i.
Let R � N be an in�nite set.

We consider the following structure made of two domains: both domains

are !, but in order to avoid any ambiguity, we temporarily denote them
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!1 and !2. On each domain !i (i = 1; 2), there is a successor function Si,

an order relation <i and a zero constant 0i. When it is clear what is the

domain we are working with, we shall use the symbols S;<; 0 instead of

S1; <1; 01 or S2; <2; 02.

Let X = fx; x0; x1; x2; : : :g be the set of variables whose values are in !1
and let Y = fy; y0; y1; y2; : : :g be the set of variables whose values are in !2.
The domain !1 is used as the set which contains R. The elements of R

can be enumerated, and this is done using the domain !2: we add to our

language a unary function symbol `R(�)' whose domain is !2 and whose

images are in !1, and that is interpreted as

R(�) : !2 ! !1 : n 7! Rn = the (n+ 1)th element of R.

The notion of `distance' between two consecutive elements of R can be

expressed using the unary predicates Ik(y) de�ned on !2 by the formula

S
k

1Ry < R(S2y) with k 2 N. The predicate Ik(y) clearly means that the

distance between the (y+1)th element of R and its successor in R is strictly

greater than k. Let IR designate the set of these predicates.

Let P be a system of almost-periodic predicates de�ned on !1 and suppose

it is closed by negations and translations.

Using the function R(�), any predicate de�ned on !1 | not just unary ones

| gives rise to a predicate of the same arity de�ned on !2: if X � !
n

1 , we

denote by XR � !
n

2 the predicate de�ned by

8b1; : : : ; bn 2 !2 XR(b1; : : : ; bn), X(Rb1 ; : : : ; Rbn):

In particular, P gives rise to a set PR of unary predicates de�ned on !2
(in general, these are not almost-periodic!).

Finally, given a set Q of (non necessarily unary) predicates de�ned on

R � !1 (that is, if Q 2 Q is an n-ary predicate, then Q � R
n), we may

equivalently 10 consider the sets Q and QR. This will allow us to move

these predicates in the `index theory' (see later). In the following we shall

denote the predicates of Q under their form Q(R(�)).

10: We have to show the interde�nability: for an n-ary predicate, we have

Q(x1; : : : ; xn) , 9y1; : : : ; yn (x1 = Ry1
^ : : : ^ xn = Ryn ^ Q(x1; : : : ; xn)) ,

9y1; : : : ; yn (x1 = Ry1
^ : : : ^ xn = Ryn ^QR(y1; : : : ; yn)).
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We consider the theories of the following two structures: �rst of all, the

theory of


!1; !2;S1; S2; <1; <2; 01; 02; R(�);P ;QR

�
which will be abbrevi-

ated as T<
R
. Notice that the predicates of PR and of IR are de�nable in

this theory.

Then we consider the so-called `index theory' TInd, that is the theory of

the structure h!2;S2; <2; 02;PR;QR; IRi.
We shall see that any formula of T<

R
which only contains variables of Y and

constants of !2 is equivalent to a formula of TInd | the converse statement

being trivially true. Notice that the function R(�) does not belong to TInd ,
so that the predicates PR; QR and IR have to be considered as predicates

on !2 and not as predicates on images of R(�).

Definition 11. By `T<
R
is an existential theory modulo TInd' we mean that

for any formula '(�x; �y) of T<
R
, there exists an equivalent formula of the

form 9�x0; �y0 �(�x; �x0; �y; �y0) where � is a combination of open formul� of

T
<

R
and of arbitrary formul� of TInd. Such a formula will be said to

be open modulo TInd .

Theorem 12. Let R be an in�nite set of natural numbers, P an almost-

periodic system of unary predicates and Q a set of predicates de�ned

on R. Then the theory T<
R

is existential modulo TInd. Moreover, T<
R

is decidable if and only if the system P is decidable and e�ectively

almost-periodic and the theory TInd is decidable.

Proof. | We shall show that in the present case, we are even able to

eliminate the quanti�ers acting on variables of X , that is, we may replace

any formula '(�x; �y) by a formula of the form 9�y0 �(�x; �y; �y0) where � is

open modulo TInd.

We �rst show that any formula of T<
R

containing only variables of Y and

the constant 02 is equivalent to a formula of TInd.

Then we prove that T<
R
is existential modulo TInd and that it is e�ectively

existential modulo TInd when P is e-a-p.

Then we roughly explain the decidability algorithm for sentences of T<
R

when P is decidable and e-a-p and TInd is decidable.

Finally, the converse implication of Theorem 12 is immediate: for the
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e�ectiveness of the almost-periodicity of P , it suÆces to express with

a sentence that � is an almost-period for a given u and to decide this

sentence for an increasing sequence of � (see Theorem 10); moreover,

since any sentence of TInd is a sentence of T<
R
, the decidability of TInd is

induced by that of T<
R
.

First step: any formula of T<
R

containing only variables of Y and the con-

stant 02 is equivalent to a formula of TInd.

Once again, we use extended terms on !1 (see page 18). There are three

kinds of terms in T<
R
:

Terms � of !1 formed

with variables and

constants of !1

Terms � of !2 formed

with variables and

constants of !2

Terms � of !1 formed

with variables and

constants of !2

S
n0

S
n
xi

�n
n 2 Z
xi 2 X

S
m0

S
m
yj

�n
m 2 N
yj 2 Y

S
n
R(Sm0)

S
n
R(Smyj)

��
n 2 Z
m 2 N
yj 2 Y

Similarly, there are three kinds of atomic formul� (we omit equality be-

cause it is de�nable by an open formula using < and S):

Formul� containing

only vars. and

csts. of !1

Formul� containing

only vars. and

csts. of !2

Formul� mixing

vars. and csts.

of !1 and !2

�1 < �2

P (�1); P 2 P

�1 < �2

Q(R�1 ; : : : ; R�k ); Q 2 Q

�1 < �2

�1 < �1

�1 < �1

P (�1); P 2 P

After simplifying the Sn's and using the fact that P is closed by transla-

tions and negations, we see that any open formula of T<
R

is built out of

the following atomic formul�:
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Formul� containing

only vars. and

csts. of !1

Formul� containing

only vars. and csts. of !2

Formul� mixing vars.

and csts. of

!1 and !2

S
n
xi 7 0

S
n
xi 7 xi0

P (xi); P 2 P

S
m
yj 7 0

S
m
yj 7 yj0

S
n
R(Smyj)

7 R
(Sm

0

y
j0
)

(�)

S
n
R(Smyj)

7 R
(Sm

0

yj)
(��)

P (R(Smyj)
); P 2 P

Q(R(Sm1yj1
); : : : ; R(Smkyj

k
)); Q 2 Q

Ik(S
m
yj)

S
n
R(Smyj)

7 0

S
n
R(Smyj)

7 xi

R(Smyj)
7 S

n
xi

(5)

The open formul� of TInd are those which are built with any of the atomic

formul� of the central column, except (�) and (��).
In order to show that the formul� of TInd are, up to equivalence, exactly

those of T<
R

which only contain variables of Y and the constant 02, it

suÆces to show what the formul� of the form (�) and (��) are equivalent
to.

First consider the formul� (�). Let  be the formula S
n
R(Smyj) >

R(Sm
0

y
j0
). Thanks to the fact that the function R(�) is strictly increas-

ing, we have that

 , (Smyj > S
m

0

yj0)

_
_

i=0:::n�1

�
S
m+i

yj = S
m

0

yj0 ^ SnR(Smyj) > R(Sm+iyj)

�
| {z }

if n>0

, (6)

because for any i > n, SnR(Smyj) 6 R(Sm+iyj) so that the disjunction

does not need to include any i > n. Notice that there is no formula (�) in
(6), but there are formul� (��). Similarly, if  is the formula R(Smyj) >

S
n
R(Sm

0

y
j0
), then by transforming  into :(R(Smyj) < S

n+1
R(Sm

0

y
j0
)),

we get back to the previous situation.

Now, let us get rid of the formul� (��):
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I If  is the formula R(Smyj) < R(Sm
0

yj)
, that is, n = 0, then  is

equivalent to Smyj < S
m

0

yj ;

I If  is the formula SnR(Smyj) > R(Sm
0

yj)
with m > m

0, then the

formula is true since R(�) is strictly increasing;

I Similarly, if  is the formula SnR(Smyj) < R(Sm
0

yj)
with m > m

0,
then  is false for the same reason;

I If  is the formula S
n
R(Smyj) > R(Sm

0

yj)
with m < m

0, then we

transform  into the equivalent formula :(Sn�1R(Smyj) < R(Sm
0

yj)
),

and this leads us to the last possible case:

I If  is the formula SnR(Smyj) < R(Sm
0

yj)
with m < m

0. Let l =

m
0 �m. Using once again the monotonicity of the function R(�), we

have that

S
n
R(Smyj) < R(Sm+lyj)

, \n < R(Sm+lyj) �R(Smyj)"

, \n <R(Sm+lyj) �R(Sm+l�1yj)| {z }
�l

+ R(Sm+l�1yj) �R(Sm+l�2yj)| {z }
�l�1

+ � � �+ R(Sm+1yj) �R(Smyj)| {z }
�1

"

Since the di�erence between two consecutive elements of R is a strictly

positive natural number, the sum of the �i's will be greater or equal

to n+1 if and only if we may �nd natural lower bounds �i 6 �i such

that the sum of these �i's is equal to n+1. Thus we only have �nitely

many possibilities to test:

� � � , \
_

16�1;:::;�l6n+1
�i�i=n+1

^
i=1:::l

�i 6 �i"

, \
_

16�1;:::;�l6n+1
�i�i=n+1

^
i=1:::l

�i � 1 < R(Sm+i+1yj) �R(Sm+iyj)"
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,
_

16�1;:::;�l6n+1
�i�i=n+1

^
i=1:::l

I�i�1(S
m+i

yj)

and this last expression is a formula of T<
R
which does not contain any

formula of the form (�) or (��) except some Ik.

Second step: T<
R

is existential modulo TInd.

We now show that:

(a) we are able to eliminate the quanti�er from any formula of the form

9x' (x; �x; �y) where ' is open modulo TInd,

(b) any formula of the form : (9�y '(�x; �y; �y0)), where ' is open modulo

TInd , is equivalent to a formula of the form 9~y �(�x; ~y; �y0) where � is

open modulo TInd .

As a careful induction shows, this suÆces in order to prove that the theory

T
<

R
is existential modulo TInd .

Let us start with (a). Consider a formula 9x '(x; �x; �y) with ' open modulo

TInd. Like in the proof of Theorem 10, after we moved out of the action

of the quanti�er all sub-formul� not containing the variable x (including

any formul� of TInd), it just remains predicates P (x) and formul� x < �
and � < x giving upper and lower bounds on x. Using a completely similar

reasoning as in Theorem 10, we get the same formula as in (2) and (3),

and one checks immediately that these are expressible using formul� of

the list (5). Thus 9x '(x; �x; �y) is indeed equivalent to some open formula

(modulo TInd).

It remains to show (b). It would be interesting to apply once again a

reasoning similar to that of Theorem 10, but the `lower bound' conditions

on the variable y might be expressed by formul� S
n
xi < S

n
0

R(Smy) or

S
n0 < S

n
0

R(Smy). In order to apply the same method as in Theorem 10,

we should be able to `invert' the function R(�). However, adding this

inverse function to our language would considerably complicate the set of

terms of T<
R
. . . Let us proceed di�erently.

If ' does not contain a sub-formula of the form

S
n
� 7 S

n
0

R(Smy) (?)
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with � 2 X [ f0g, then we get a formula open modulo TInd by moving

out of the action of the quanti�er any formula not containing a variable

of �y. We show, using an induction on the number of formul� (?), that we

may move them out of the action of the `:9�y' by adding new existential

quanti�ers. Here is the (e�ective) process we may apply:

Suppose that the formula : (9�y '(�x; �y; �y0)) is of the form

:
�
9�y �Sn� < S

n
0

R(Smy) ^  (�x; �y; �y0)
��

(7)

where y is a variable of �y, � 2 X [ f0g and where  is open in T<
R

and

may still contain sub-formul� (?) (the case `>' is completely similar and is

discussed afterwards). The trick will consist in \framing", if possible, the

term S
n
� between terms made with a new variable of Y and to compare y

to this new variable. That way, the `bounding condition' will be split into

the conjunction of a formula containing other variables than those of �y (so

that they will be moved out of the action of the :9�y) and comparisons

between y and these new variables (and this will be a formula of TInd).

We need a y? such that

S
n
0

R(Smy?) 6 S
n
� < S

n
0

R(Sm+1y?).

Due to the monotonicity of R(�), there exists such a y
? if and only if

S
n
0

R(Sm0) 6 S
n
� . If such a framing does not exist, then for any y,

S
n
� < S

n
0

R(Smy) is true, so that there is no condition. Thus we may

replace formula (7) by the equivalent formula

9y?
��
S
n
0

R(Smy?) 6 S
n
� < S

n
0

R(Sm+1y?) _ Sn� < S
n
0

R(Sm0)

�

^ :
�
9�y�y? < y _ Sn� < S

n
0

R(Sm0)

� ^  (�x; �y; �y0)�| {z }
 0

�
. (8)

Using the distributivity of ^ on _ and after a few elementary manipula-

tions, we may write  0 under the form

:
�
9�y (y? < y) ^  (�x; �y; �y0)| {z }

 1

�

^
h
:(Sn� < S

n
0

R(Sm0)) _ : (9�y (�x; �y; �y0))
i
.

(9)



30 A. MAES

In this last formula, there is one less sub-formula (?) in  and in  1 than

in '. If they do not contain any, then  and  1 are equivalent to formul�

of TInd and (9) is open modulo TInd , as well as (8). Otherwise, we start

this process again for  and  1, and this process eventually stops since at

each step we get rid of one formula (?).

Similarly, for a formula of the form

:
�
9�y�Sn� > S

n
0

R(Smy) ^  (�x; �y; �y0)
��

,

arguing in the same way, we may replace it by�
S
n
� 6 S

n
0

R(Sm0)

�
_ 9y?

h
S
n
0

R(Smy?) < S
n
� 6 S

n
0

R(Sm+1y?)

^ :�9�y (y? > y ^  (�x; �y; �y0))| {z }
 0

�i
:

(10)

This time, if it is impossible to frame the term S
n
� , then there is no y

satisfying the bounding condition and the formula is true. Again, if (10)

is not yet open modulo TInd , then we start this process again.

At the end, it just remains a formula 9�y?�(�x; �y?; �y0) where � is open modulo
TInd, and this proves point (b).

Third step: T<
R

is e�ectively existential modulo TInd when P is e-a-p.

When P is decidable and e-a-p, the quanti�er elimination with respect to

the variables of X is e�ective, like in Theorem 10, as well as the above

process. The theory T<
R

is thus e�ectively existential modulo TInd.

Fourth step: decidability algorithm for sentences of T<
R

when P is decid-

able and e-a-p and TInd is decidable.

Let us roughly explain the decidability algorithm of T<
R
under the hypoth-

esis that P is decidable and e-a-p and that TInd is decidable.

Given a sentence ' to be decided, we apply the result we just have shown

to replace both ' and :' by equivalent formul� 9�y �'(�y) and 9�y0 �:'(�y0),
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where �' and �:' are open modulo TInd, �y = (y1; : : : ; yn), and �y0 =

(y01; : : : ; y
0
m
).

The decidability algorithm consists in alternatively enumerating all possi-

ble n-uples �a and m-uples �a0 of natural numbers and to compute the truth
values of �'(�a) and of �:'(�a

0). These values may be e�ectively computed

since any sub-formula of �'(�a) (resp. �:'(�a
0)) is now either open and

variable-free or is a sentence of TInd | since the free variables have been

replaced by the values of �a (resp. �a0). In the �rst case, we only need to

compute the truth value, and in the second case, the truth value of the

sentence can be found as we supposed that TInd is decidable.

The algorithm stops as soon as it founds a n-uple �a satisfying �'(�a) (' is

then true) or a m-uple �a0 satisfying �:'(�a
0) (it is then false).

This concludes the proof of Theorem 12. 2

Example 13. If P is a decidable and e-a-p system and if Q is a set of

unary predicates such that the set PR [ QR [ IR forms a decidable and

e-a-p system, then TInd is decidable by Theorem 10 (it even has e�ective

QE) so that Theorem 12 applies.

Example 14. If R is a unary predicate such that the limit 11 of the di�er-

ences of consecutive elements of R exists and is bounded, then Example 13

applies as soon as P is decidable and e-a-p and Q is a set of unary predi-

cates such that PR [ QR is decidable and e-a-p.

Proof. | The condition on R means that R is a ultimately periodic

predicate.

Let L = limy2! R(y+1) �Ry. This means that

9m8y > m : R(y+1) �Ry = L.

Thus, beyond the mth position, the symbols of the characteristic word of

Ik will all be `0' when k > L, and will all be `1' when k < L. A word will

be in�nitely present in Ik if and only if either this word only contains `0'

symbols and k > L or only contains `1' and k < L. As a consequence,

PR [ QR [ IR is e-a-p as soon as PR [ QR is.

11: We also need to suppose that this limit is e�ectively calculable, that is, it is possible

to determine the value of an m beyond which all di�erences are equal.
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Example 15. If R is a unary predicate such that the limit 12 of the di�er-

ence of consecutive elements of R `exists' and is in�nite, then Example 13

applies as soon as P is e-a-p and Q is a set of unary predicates such that

PR [ QR is decidable and e-a-p.

Proof. | Indeed, we have

8k9mk8y > mk : R(y+1) �Ry > k.

Thus the symbols of Ik all are `0' beyond the mth
k

position, and we may

apply the same reasoning as in Example 14.

5. Decidability, Index Function, Addition and
Almost-Periodicity

We now want to extend Presburger Arithmetic by considering structures

of the form h!; +; <;R; 0; 1i, where R is an in�nite predicate. We shall

show that when R satis�es certain conditions (when R is `sparse'| see

De�nition 18), the theory of some larger structure is existential modulo a

sub-theory, just like in Section 4. In order to isolate certain variables ap-

pearing in inequalities, we shall have to temporarily extend our language,

allowing sums with negative coeÆcients. These sums will be called `oper-

ators'. Basically, the sparseness condition on R will allow us to re-use the

`framing trick' of Theorem 12.

5.1. Operators and Sparse Predicates:
Definitions and Properties

Definition 16. Let R � ! be a unary predicate, and let R(�) denote the in-
dex function de�ned in the previous section. An operator (on R) is any

expressionAR of the form anR(Sn�)+� � �+a0R(S0�) with a0; : : : ; an 2 Z.
We also call operator the associated function A

R(�) : N ! Z : y 7!
anR(Sny) + � � �+ a0R(S0y).

12: The previous remark applies here as well. . .
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Definition 17. We say an operator AR is

I null (on R) if its image is f0g,

I positive (on R) if the set
�
y 2 N j ARy 6 0

	
is �nite, and

I negative (on R) if the set
�
y 2 N j ARy > 0

	
is �nite.

This will be respectively denoted AR =R 0, AR >R 0 and AR <R 0.

Finally, two operators AR and BR are said to be equal on R if their

di�erence AR �B
R, de�ned in the obvious way, is null on R.

Definition 18. A unary predicate R is sparse if for any operator AR, the

following two conditions are satis�ed:

P1. AR =R 0 or AR <R 0 or AR >R 0,

P2. If AR >R 0, then there exists a natural number � such that

A
R(S�y)�Ry > 0 for all y 2 N.

A predicate R is said to be e�ectively sparse whenever it is sparse

and there exists an algorithm that decides, for any given operator AR,

which condition of P1 is satis�ed, and, in case AR >R 0, that gives a

natural number � satisfying condition P2.

Examples of sparse predicates are given in Appendix B. Here are a few

consequences of De�nition 18.

Lemma 19. Let R be a sparse predicate and let AR be a positive operator

on R. Then there exists a natural number � such that AR(S��) is a
strictly increasing positive function.

Proof. | Using De�nition 18.P2, we know that there exists a natural

number � such that for any y, AR(S�y) is strictly positive and lowered

by Ry.

Consider the operator BR = A
R(S�)� A

R(�). Since R is sparse, we have

either BR <R 0 or BR =R 0 or BR >R 0. Let us show the �rst two cases

are impossible.
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Suppose BR =R 0. Then AR(�) is constant, and so is AR(S��). But this
contradicts the fact this last function is lowered by a strictly increasing

integer function.

Similarly, suppose BR <R 0. So the set of non negative values of AR(S�)�
A
R(�) is �nite, and thus there exists a natural numberN such that AR(SN �)

is a strictly decreasing function. But the integer function AR(Smaxf�;Ng�)
is simultaneously strictly decreasing and lowered by a strictly increasing

integer function. This gives a contradiction.

Now, BR >R 0 and this implies that there exists a natural number �0 such
that BR(S�

0

y) > Ry > 0 for any y, i.e. AR(S�
0

y) is strictly increasing

for any y. It suÆces to take � = max f�;�0g. Notice that � is e�ectively

obtained whenever R is e�ectively sparse.

Remark 20. Re-using the `growth operator' AR(S�)�AR(�), we show that

any positive operator is a `superpolynomial' function: for any operator

A
R
>R 0 and any polynomial p(y) : N ! Z, there exists a � such that

for all y > �, AR(y) > p(y). Let us show this by induction on the degree

of p:

I for deg p = 0, it is an immediate consequence of the lemma.

I for deg p = n + 1, since the polynomial p(y + 1) � p(y) has degree n

and since AR(S�) � A
R
>R 0, using the induction hypothesis, there

exists a �n such that the growth of AR is strictly bigger than that

of p. Let c = p(�n) � A
R(�n). We see that it suÆces to take � =

�n +maxf0; cg. 2

Considering the function R(�) as an operator (which is trivially >R 0), we

get the result that any polynomial eventually lowers the function R(�).

5.2. Decidability of the Addition

As before, we want to study the theory of a structure built on two domains.

This time, it is the theory T+
R

of

!1; !2; +1; <1; 01; 11; E ; S2; <2; 02; R(�);QR

�
where E = f� �m c j c;m 2 N; c < m 6= 0; 1g denotes the set of congruence
predicates on !1 and QR is as in Section 4.
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The variables whose values are in !1 are elements of the set

X = fx; x0; x1; : : :g ;

and those whose values are in !2 will be elements of

Y = fy; y0; y1; : : : ; z; z0; z1; : : :g :

Notice that the successor function is trivially de�nable in !1 by `+111' so

that it is useless to add S1 to our language. However, we cannot de�ne

S2 by a quanti�er-free formula.

We also consider the sub-theory TInd of h!2;S2; <2; 02; ER;QR; IRi which
is de�ned like in Theorem 12 (see page 24, where P has been replaced by

E , and both QR and IR are as before).

Theorem 21. Let R be a sparse predicate and let Q be a set of predicates

de�ned on R. Then the theory T+
R

is existential modulo TInd . More-

over, it is decidable if and only if R is both decidable and e�ectively

sparse and TInd is decidable.

Proof. | The proof of this theorem follows the same structure as that of

Theorem 12: we �rst show that we have QE with respect to quanti�cations

on X ; then we show that any formula : (9�y '(�x; �y; �y0)), where ' is open

modulo TInd, is equivalent to an existential formula (modulo TInd). The

decidability algorithm of T+
R
is similar to that of Theorem 12 (see page 30).

Finally, for the `only if' part of the proof, any sentence of TInd is a sentence

of T+
R

(and thus is decidable) and since R is sparse, its e�ectiveness will

be obtained using sentences of T+
R

(see the end of the proof).

First step: QE with respect to quanti�cations on X .

Let ' be an open formula modulo TInd. Let us show we are able to get

rid of the quanti�er of 9x '(x; �x; �y). The arguments we use are the same
as in Presburger's proof.

The atomic formul� containing the variable x are comparisons and con-

gruences. We would like to apply the same reasoning as in Theorem 10

(with the congruences as system of almost-periodic predicates). However,
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the terms may be more complicated: the coeÆcient of x can be any natural

number and the congruences may mix x and other variables.

Without loss of generality, we may suppose that ' is a conjunction of

atomic formul�, each of them containing the variable x. We convert equal-

ities into inequalities and in each of them, we simplify the occurrences of

x in order to keep x just on one side. We replace negated congruences by

a (�nite) disjunction of congruences

�(x; �x; �y) 6�
m
c,

_
i<m

i6=c

�(x; �x; �y) �m i,

and then split any congruence into a part containing x and a part contain-

ing the other variables (this last part being then moved out of the action

of the quanti�er):

nx+ �(�x; �y) �m c ,
_

06i<m

(nx �m i ^ �(�x; �y) �m c� i) .

Using the abbreviation `nx' for `x+ � � �+ x| {z }
ntimes

', the remaining atomic for-

mul� are either inequalities nx+�1(�x; �y) 7 �2(�x; �y) or congruences nx �m
c, where �1 and �2 are terms of T

+
R

and n;m; c 2 N with c < m 6= 0; 1.

We extend our language in order to accept sums with negative coeÆcients.

Denoting by �(�x; �y) the new terms, this allows us to restrict ourself to

inequalities nx 7 �(�x; �y) and congruences.

For any natural number k > 0, we have the equivalences

nx 7 �(�x; �y) , k � nx 7 k � �(�x; �y)
nx �m c , k � nx �k�m k � c

(the `multiplication' by k has still to be considered as a repeated sum). For

any such atomic formula  , let n be the coeÆcient of x. If we let l be the

lowest common multiple of the n 's, we can transform all these formul�

 so that the coeÆcients of x are always l. Denote by  (lx; �x; �y) any of

these new formul�. It is clear there exists a solution x to the conjunction

of the  (lx; �x; �y) if and only if there exists a x0 multiple of l satisfying

the conjunction of the  (x0; �x; �y). So we may replace 9x '(x; �x; �y) by the
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equivalent formula 9x (x �l 0 ^
V
 (x; �x; �y)) in which x only appears with

coeÆcients 1. Writing it using a canonical form, we have reduced ' to the

form

9x
 ^

a=1:::A

�1a < x ^
^

b=1:::B

x < �2b ^
^

d=1:::D

x �md
cd

!
: (11)

We are exactly in the same situation as in Theorem 10: we have to satisfy

lower and upper bounds, as well as some periodic predicates. Applying

the same reasoning, we �nally get a formula equivalent to (11) of the form

(3) (on page 19).

Once again, we are able to transform extended terms back to classical

terms of T+
R

using the equivalences

�1 � �2 < �
0
1 � �

0
2 , �1 + �

0
2 < �

0
1 + �2

�1 � �2 �m 0 , �1 + (m� 1) � �2 �m 0.

This concludes the elimination of the quanti�er 9x.

Second step: any formula : (9�y '(�x; �y; �y0)), where ' is open modulo TInd ,

is equivalent to an existential formula (modulo TInd).

Now, we show how to transform the formula : (9�y '(�x; �y; �y0)) into an

existential formula modulo TInd . Like in Theorem 12, we shall frame

annoying terms in such a way that the quanti�er :9�y only acts on a

formula of TInd . Again, we extend our language in order to accept sums

with negative coeÆcients. We �rst need a few lemmas. . .

Notation. Let y; �z 2 Y be variables and let � be a natural number. We

denote by M�(�) the following formula (according to its arity):

M�(y) , y > �

M�(y; �z) ,
^
z2�z

y > (S�z):

Lemma 22. Let R be a sparse predicate and let AR be a positive operator

on R. Let �(�z) be a term of T+
R

whose variables di�er from y. Then

there exists a natural number � such that

8y; �z �M�(y; �z)) A
R
y > j�(�z)j� .
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Proof. | Let c be the sum of the absolute values of the coeÆcients

appearing in the term �(�z) (including the constants of !1) and let d be

the maximum exponent of the `S2' of �(�z) (with d = 0 if there is no S2, for

instance when �z = ?). If we set z0 = max fz 2 �zg, we see that c �R(Sdz0) >

j�(�z)j. This shows that it suÆces to prove the existence of a � such that

A
R(S��) is strictly increasing and such that AR(S�z) > c �R(Sdz) for any

z (then, when M�(y; �z) is satis�ed, we have that ARy > A
R(S�z0) >

c �R(Sdz0) > j�(�z)j).
Lemma 19 gives us a � such that any � > � satis�es the �rst condition.

It remains to show that � can be taken so that the second condition is

ful�lled.

It suÆces to show the result in the case d = 0: for d 6= 0, we suppose � > d

and replace the condition AR(S�z) > c � R(Sdz) by A
R(S��dz) > c � Rz;

this leads back to the case d = 0.

Using De�nition 18.P2, we �nd a �1 such that AR(S�1z) � Rz > 0 for

any z. Since the operator AR(S�1 �) � R(�) is positive, there exists a �2

such that
h
A
R(S�1S

�2z) � R(S�2z)

i
� Rz > 0, and the monotonicity of

R(�) implies that A
R(S�1+�2z)� 2Rz > 0. Continuing in the same way,

we �nd �1; : : : ;�c such that AR(S�1+���+�cz) � cRz > 0. It suÆces to

take � = �1 + � � �+�c. Moreover, � can be found e�ectively when R is

e�ectively sparse. 2

Corollary 23. Let AR be a positive operator on R. Applied to the operator

A
R(S�)�AR(�) which is also positive on R by Lemma 19, the previous

lemma shows that for any given term � , there exists a � such that the

images by AR of two consecutive natural numbers greater (at least by

�) than the values of the variables of �z are apart from each other at

least by j�(�z)j. This fact will be used later.

The following lemma will allow inductions on the amount of variables of

Y : it replaces any formula of T+
R

by a disjunction of formul� containing

less variables of Y and of formul� in which one variable of Y bounds the

others.

Notation. Let �y be the sequence (y1; : : : ; yn) of variables of Y . For any

1 6 i 6 n, we denote by �yin the reduced sequence (y1; : : : ; yi�1; yi+1; : : : ; yn).
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Lemma 24. Let �y = (y1; : : : ; yn), let '(�y) be an open formula 13 modulo

TInd and let �1; : : : ;�n be natural numbers. Then we may construct

a formula  (�z) (open modulo TInd) with �z = (z1; : : : ; zn�1) and such

that

9�y '(�y) ,
_

16i6n

9�y �M�i
(yi; �yin) ^ '(�y)

� _ 9�z  (�z):

Proof. | Suppose that 9�y'(�y) is satis�ed but that the disjunction

on 1 6 i 6 n is false. Then for each i, M�i
(yi; �yin) is false, so that

there exists a ji 6= i with yi 6 S
�iyji . By a simple counting argument,

we see there must exist a `cycle'. Suppose this cycle is y1 6 S
�1y2, y2 6

S
�2y3; : : : ; yk 6 S

�ky1 with 2 6 k 6 n. This implies y1 6 S
�1+���+�k�1yk

and yk 6 S
�ky1. Thus there exists some l 6 �1 + � � � + �k such that

y1 = S
l
yk or yk = S

l
y1. In the general case, there exist some values

of i and j such that yi = S
l
yj for some 0 6 l 6 �1 + � � � + �n. Let

� = �1 + � � �+�n. In order to satisfy the implication \)", it suÆces to

take as formula `9�z (�z)' the prenex form of_
06i6=j6n
06l6�

9 �yin|{z}
�z

'(y1; : : : ; yi�1; S
l
yj ; yi+1; : : : ; yn).

It is obvious that the implication \(" is also satis�ed for this choice of  .

2

Now, let us transform the formula : (9�y') into an existential formula

modulo TInd , when ' is open modulo TInd . We proceed by induction on

the amount of variables of �y = (y1; : : : ; yn). For n = 0, there is nothing to

do. We show how to get from n to n+ 1.

By Lemma 24, it suÆces to �nd natural numbers �1; : : : ;�n such that

the formula^
16i6n

: �9�y �M�i
(yi; �yin) ^ '(�x; �y; �y0)

�� ^ : (9�z  (�x; �y0; �z))

is equivalent to an open formula modulo TInd. Using the induction hypoth-

esis, we may get rid of the : (9�z (�z)) since �z contains one less variable

13: For clearness reasons in this lemma, we shall not indicate unquanti�ed variables. . .

We should have written '(�x; �y; �y0).
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than �y. It remains to prove the following statement (in which we renamed

the variables):

Lemma 25. Given a variable y, a sequence of variables �z and a formula

'(�x; y; �z; �y0) (open modulo TInd), it is possible to �nd a natural number

� such that the formula

: (9y9�z (M�(y; �z) ^ '(�x; y; �z; �y0))) (12)

is equivalent to a formula of the form

9~y ( 1(�x; ~y; �y0) ^ : (9�z  2(�x; ~y; �y0; �z))) (13)

where ~y is a sequence of new variables and  1;  2 are open modulo

TInd .

Proof. | We proceed as in Theorem 12.

The two kind of sub-formul� we have to treat are congruences and in-

equalities between terms containing y, �z, variables of X and constants of

!1. Using extended terms, these can be written ARy + �(�z) + �(�x) �m c

and ARy + �(�z) 7 �(�x) with AR >R 0.

Once again, we are going to proceed with an induction on the amount of

sub-formul� which are not open modulo TInd and contain y. Each step

will be feasible if we satisfy some M�-condition, and the maximum of all

these �'s will be the one we need in order to transform (12) into (13).

Then we shall be able | with a possible renaming of linked variables |

to move all the new quanti�ers to the beginning of the formula.

Of course, if there is no problematic formula, we may commute the 9y with
the 9�z. Then, since any atomic formula containing y is open modulo TInd ,

we may move down the quanti�er 9y on these sub-formul�, and they re-

main open modulo TInd. So we immediately get a formula : (9�z  (�x; �y0; �z))
on which we may apply our induction hypothesis. (In this case, we do not

even need to use a M�-condition.)

We now get rid of the congruence in

: �9y; �z �ARy + �(�z) + �(�x) �m c ^ '(�x; y; �z; �y0)
��

(in order to simplify the notation, we move the formula M�(y; �z) into ').
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Let AR = anR(Sn�) + � � � + a0R(S0�). We may replace the congruence

A
R
y + �(�z) + �(�x) �m c by the disjunction

_
i0=0:::m�1...
in=0:::m�1

0
@ ^

j=0:::n

R(Sjy) �m ij ^
X

j=0:::n

aj � ij + �(�z) + �(�x) �m c

1
A :

Since y only appears in formul� of TInd in this last expression, we need

to eliminate one less problematic formula. This gives us the induction for

congruences. (Again, we did not need to use the M�-condition.)

Finally, we treat the inequality in

: �9y; �z �ARy + �(�z) 7 �(�x) ^M�(y; �z) ^ '(�x; y; �z; �y0)
��

(14)

(we shall precise later whether it is a `<' or a `>').

We want to frame the term �(�x) (like in Theorem 12) using the image

by AR of a new variable y?. This will be possible if the minimal value

mA of the images of the operator AR is lower or equal to �(�x) (remember

A
R
>R 0). The value of mA can be computed whenever R is e�ectively

sparse, since, by Lemma 19, we may compute a natural number �1 such

that AR(y) is strictly increasing for any y > �1.

Let y? be a new variable satisfying

A
R(Sy?) > �(�x) > A

R
y
? _ �(�x) < mA. (15)

The �rst problem we encounter is that the function A
R(�) is not mono-

tonic. Thus, we might have a y? satisfying (15) but which would not be

extremal with respect to this property (see Figure 1); consequently, we

would not be allowed to deduce from it implications like \8y > y
?
;8y0 >

y
?
�
y > y

0 ) A
R
y > A

R
y
0�".

This problem can be avoided by setting additional conditions on �.

Let MA be the maximal value of the images of AR before it gets strictly

increasing. This can be computed when R is e�ectively sparse (like mA).

Since AR(y) is strictly increasing for y > �1, there exists some �2 > �1

such that AR(y) > MA when y > �2.
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-

6Z� !1

!2

q

y
?

1

q

y
?

2

A
R(y?1) = A

R(y?2)

qq�(�x)

q

Sy
?

1

MA = A
R(Sy?1)

q

Sy
?

2

A
R(Sy?2)

A
R(�)

mA

-
�?

Figure 1: y?1 and y?2 satisfy (15).

Using Corollary 23, since AR(S�)� A
R(�) is positive on R, there exists a

�3 such that

8y; �z �M�3
(y; �z)) A

R(Sy)�A
R
y > j�(�z)j� .

Let � = max f�2;�3g+ 1. This ensures that for any y > � and any y0,

y < y
0 �1) A

R
y < A

R
y
0 �3) A

R
y + �(�z) < A

R
y
0
;

y > y
0 �2) A

R
y > A

R
y
0 �3+1) A

R
y + �(�z) > A

R
y
0
:

In particular, if we replace y0 by y? or Sy?, we get

y < y
? ) A

R
y + �(�z) < A

R
y
?
;

y > Sy
? ) A

R
y + �(�z) > A

R(Sy?):

If �(�x) > mA, then the images of y? `frame' �(�x) and these formul�

become
y < y

? ) A
R
y + �(�z) < �(�x);

y > Sy
? ) A

R
y + �(�z) > �(�x):
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In this case, it remains to check whether y = y
? or y = Sy

? is a possible

solution for the existence.

On the contrary, if �(�x) < mA, then whatever is the value of y?, we

always have that ARy? > �(�x). In particular, AR0 > �(�x) and thanks

to the choice of �3, A
R
y + �(�z) > A

R
y � j�(�z)j > �(�x) for any y > 1.

Consequently, ARy+ �(�z) > �(�x) is satis�ed for any y such thatM�(y; �z)

is true (since � > 1).

Summing up:

1) Suppose the inequality we work on is `<'. Then the formula

: �9y; �z �ARy + �(�z) < �(�x) ^M�(y; �z) ^ '(�x; y; �z; �y0)
��

is equivalent to the formula

(�(�x) < mA) _ 9y?
"
A
R
y
? 6 �(�x) < A

R(Sy?)

^ :9y; �z (M�(y; �z) ^ y < y
? ^ '(�x; y; �z; �y0))

�
 1

^ :9�z�ARy? + �(�z) < �(�x) ^M�(y
?
; �z) ^ '(�x; y?; �z; �y0)

_ AR(Sy?) + �(�z) < �(�x) ^M�(Sy
?
; �z) ^ '(�x; Sy?; �z; �y0)�

#
9>>=
>>; 2.

2) On the other hand, if we work on `>', then the formula

: �9y; �z �ARy + �(�z) > �(�x) ^M�(y; �z) ^ '(�x; y; �z; �y0)
��

is equivalent to

9y?
h �
A
R
y
? 6 �(�x) < A

R(Sy?) _ �(�x) < mA

�
^ :9y; �z (M�(y; �z) ^ y > Sy

? ^ '(�x; y; �z; �y0))
�
 1

^ :9�z�ARy? + �(�z) < �(�x) ^M�(y
?
; �z) ^ '(�x; y?; �z; �y0)

_ AR(Sy?) + �(�z) < �(�x) ^M�(Sy
?
; �z) ^ '(�x; Sy?; �z; �y0)�i

9>>=
>>; 2.
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In each case, the formula  1 contains one less annoying formula and the

formula  2 does not contain the variable y. We may thus �nish the work

by induction. Notice that a value of � can be e�ectively computed when

R is e�ectively sparse. Using the maximum of the �'s we found on each

step of the induction, we �nally proved Lemma 25.

Third step: if R is sparse and T+
R
is decidable, then R is e�ectively sparse.

Like in Theorem 10, this will come from the fact that the conditions can

be expressed by sentences of our language.

Let AR be an operator anR(Sn�) + � � �+ a0R(S0�) with ai 2 Z (i = 0 : : : n).

We know A
R 6
>R

0. Here is the algorithm that allows us to �nd out which

possibility is the good one.

Let J+ denote the set of i's such that ai > 0 and J� the set of i's such

that ai < 0. We have

A
R(y) 6

>
0,

X
i2J+

aiR(Siy)
6
>

X
i2J�

jaijR(Siy).

We have AR =R 0 if and only if for any y, AR(y) = 0. This can be

expressed by the sentence of T+
R

8y
X
i2J+

aiR(Siy) =
X
i2J�

jaijR(Siy) (16)

and the hypothesis tells us that it can be decided. Similarly, AR >R 0 if

and only if �nitely many y are such that AR(y) 6 0. This can be expressed

by the sentence of T+
R

9y8y0
 
y
0
> y )

X
i2J+

aiR(Siy0) >

X
i2J�

jaijR(Siy0)

!
(17)

which is also decidable. Finally, AR <R 0 if and only if the previous two

sentences are false. Thus we have an algorithm deciding 18.P1.

SupposeAR >R 0. The deciding algorithm for 18.P2 works in the following

way: it decides the following sentences for an increasing sequence of �

8y
X
i2J+

aiR(S�+iy) >

X
i2J�

jaijR(S�+iy) +R(y) (18)
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and gives the value of � as soon as such a sentence is true. It will even-

tually stop since we supposed R is sparse and AR >R 0.

This concludes the proof of Theorem 21. 2

6. Back to h!;<;Ri and h!; +; Ri

6.1. Decidability of the Theories of h!;<;Ri and
h!; +; Ri for certain R

We now want to study the theories of the structures h!;S;<;R; 0i and
h!; +; R; 0; 1i (where R only plays a role of predicate). These will be

abbreviated by h!;<;Ri and h!; +; Ri.
In order to use our previous results, we shall naturally look at the set R of

sparse predicates on which congruences are almost-periodic, that is such

that ER is a-p.

When R 2 R, we may see the theory of h!; +; Ri as a sub-theory of the

theory T+
R

(see its de�nition on page 34, with QR = ?). This gives the

following result:

Corollary 26. Let R 2 R. The theory of h!; +; Ri is decidable if and only

if R is e�ectively sparse (e-s) and ER is e-a-p.

It is then interesting to remember Remark 20 that shows that a sparse

predicate is `superpolynomial', and to compare this corollary with B�uchi's

famous theorem [2] that says that h!; +; Ri is undecidable whenever R is

polynomial.

Proof. | First consider a predicate R 2 R such that R is e-s and ER
is e-a-p. Since R is e-s, we may �nd a natural number � such that for

any y, RS�+1y � RS�y > y. In particular, limy!1RSy � Ry = 1. By

remark 14 15 and Theorem 10, the theory TInd is decidable. Theorem 21

now applies and shows T+
R
is decidable. Since any sentence of h!; +; Ri is

a sentence of T+
R
, we get the result we wanted.

14: In this case, the `e�ective limit' condition mentioned in Footnote 11 is satis�ed.
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In order to show the converse implication, it suÆces to show that formul�

(4) on page 20 (expressing the e�ectiveness of the almost-periodicity of

ER) and (16{18) on page 44 (expressing the e�ectiveness of the sparseness

of R) are expressible in h!; +; Ri. Notice that the variable `x' appearing
in formula (4) should be a variable y 2 Y in T+

R
, and that the predicates

`Pk' are predicates of ER or of IR.
The predicate R is clearly decidable (since for any natural m, `R(Sm0)' is

a sentence of h!; +; Ri), so for each natural number m, we may e�ectively

�nd the mth element of R. We may add to our language a new constant

symbol `Rm' for each m.

Moreover, congruences are de�nable in h!; +; Ri by
�(�x) �m c , 9x0(�(�x) = x

0 + � � �+ x
0| {z }

mtimes

+ c):

Now, we show that any formula of T+
R
whose free variables are variables of

X may be written as an equivalent 15 formula of h!; +; Ri. This `partial
interde�nability' will suÆce in order to convert (4) and (16{18) to formul�

of h!; +; Ri.
By the usual induction argument on the construction of formul�, it suÆces

to show how to convert

9y
^

i=1:::n

'i(�x; y; �y)

(where all the quanti�ed variables of the 'i's are in X) into formul� not

containing y anymore (although they may contain many new variables of

X). The atomic formul� 16 of 'i that contain y are of the following types:

S
n
y 7
(1)

S
n
0

y
0
; A

R
y +B

R�y + �(�x) 7
(2)

0; ARy +B
R�y + �(�x) �m

(3)

c: (19)

We use the fact that y represents the index of an element of R, replace

the quanti�cation 9y(� � �) by a quanti�cation on a new variable x and add

the condition x 2 R, i.e. we get a formula of the form 9x (R(x) ^ : : :).
15: In the sense that the subset of !1 de�ned by the �rst formula coincides with the

subset of ! de�ned by the second one.

16: Once again, we use extended formul� with operators, etc.
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The replacement of formul� (1); (2) and (3) by equivalent formul� with

x is possible thanks to the fact the `successor in R' operation is de�nable

in h!; +; Ri: suppose y corresponds to `x0 2 R'; then Sy will correspond

to the x1 which satis�es

x0 < x1 ^ R(x1) ^ 8x0 (x0 < x
0
< x1 ) : (R(x0))) .

Continuing that way, we easily convert Sny to a variable of X for any

natural number n.

Consequently, wishing to replace 9y(: : :) by 9x (R(x) ^ : : :), formula (1)

becomes

9x0 < : : : < xn

h
x0 = x ^

^
j=0:::n

R(xj)

^ 8x0 �(x0 < x
0
< xn ^

^
j=0:::n

x
0 6= xj)) : (R(x0)) � ^ xn 7 S

n
0

y
0
i
.

In the same way, for formul� (2) and (3), with AR =
P
j=0:::n ajRSj �, we

introduce new variables x0; : : : ; xn and replace (2) (and similarly (3)) by

9x0 < : : : < xn

h
x0 = x ^

^
j=0:::n

R(xj)

^ 8x0�(x0 < x
0
< xn ^

^
j=0:::n

x
0 6= xj)) : (R(x0)) �

^
X

j=0:::n

ajxj +B
R�y + �(�x) 7 0

i
:

In particular, the sentences (4) and (16{18) may be written as sentences

of h!; +; Ri. The algorithms we gave on pages 20 and 44 still apply here,

and this proves that ER is e-a-p and R is e-s. 2

Remark 27. The proof of Corollary 26 shows that for any n, de�nable

subsets of !n in h!; +; Ri are exactly de�nable subsets of !n1 in T+
R
. We

could not much more extend this notion of `partial interde�nability' since

a subset of !n11 � !
n2

2 would be meaningless in h!; +; Ri for n2 > 1.

When R is a predicate such that IR[ER is almost-periodic, a result similar

to Corollary 26 can be given for the theory of h!;<;R; Ei:
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Corollary 28. Let R 2 R. The theory of h!;<;R; Ei is decidable if and

only if IR [ ER is e-a-p.

The proof consists on one hand in moving into the theory T<
R
described on

page 24 and in using Theorem 12, and on the other hand in noticing that

the method we used in the previous proof in order to transform formul�

(1) and (2) still works 17 in this case. 2

Example 29. We show in Examples 33, 36 and 37 (in Appendix B) that

the predicates Rcn , Rn! and RFib (where c is a natural number > 1) are

e�ectively sparse predicates. For any m, the rests of cn modulo m form a

periodic sequence (m being a period); those of n! are constant for any n >

m; and those of Fibonacci sequence also form a periodic sequence. Indeed,

they satisfy the same induction rule, so that two consecutive elements

determine the rest of the sequence. Since any segment of length m2+2 of

the sequence of the rests contains (at least) two equal pairs of consecutive

elements, we see that the period is lower than or equal to m2 + 2 (it can

be e�ectively found by computing the �rst m2 + 2 Fibonacci numbers).

As a consequence, the systems ERcn , ERn! and ERFib
are periodic, and thus

e-a-p.

Corollaries 26 and 28 do apply, showing the decidability of the theo-

ries of the structures h!;<; ERcn i, h!; +; Rcni, h!;<; ERn!i, h!; +; Rn!i,
h!;<; ERFib

i and h!; +; RFibi.

6.2. A Structure whose Theory is Undecidable but whose
Relations are Decidable

We now show a quite peculiar structure: all of its de�nable relations are

decidable 18, but the theory of this structure is undecidable 19.

LetW be the non-e�ectively almost-periodic word we build in Appendix A.

We de�ne a predicate RW from the sparse predicate Rn! in such a way

17: Except that operators are replaced by terms `SnR
Sly

'.

18: Recall that a relation is decidable if there exists an algorithm (we might not know

it and it depends on the relation) which decides, for any n-uple of natural numbers,

whether this n-uple belongs or not to the relation.

19: There is no `global' algorithm deciding any sentence.



REV I S IT ING SEMENOV ' S RESULTS 49

that the elements of ER are almost everywhere equal to W .

Let RW be the predicate de�ned by

x 2 RW , 9y
�
(x = y! ^ : (W (y))) _ (x = 1 + y! ^W (y))

�
:

Since the unary relations `being a factorial number' and `belonging to W '

are decidable (since W is computable), this predicate is decidable as well.

By Example 36 on page 56, it is also e�ectively sparse. Moreover, for

any natural number m > 1, the sequence of the rests modulo m of the

elements of RW coincides almost everywhere with the characteristic word

of W , since for any j > m, Rj �m 0, W (j). This shows ERW forms an

almost-periodic system 20 but which is not e-a-p. By Example 15, we do

not have to worry for the almost-periodicity of the system of predicates IR.
Since R 2 R, Corollary 26 tells us that the theory of h!; +; RW i is unde-
cidable.

However, the de�nable sets (or relations) of h!; +; RW i are the same as

those of T+
R
. But T+

R
is an existential theory. Thus any n-ary relation

'(�x) is decidable: a deciding algorithm exists, and is described on page 30.

However, it requires us to know an existential version of both '(�x) and

: ('(�x)). This means that these formul� do exist, but there is no global

algorithm giving them.

Appendices

A. A Non-Effectively Almost-Periodic Word

We want to show that there exists a decidable 21 almost-periodic word

which is not e�ectively almost-periodic. We shall consider a machine M

(say a Turing machine) whose entries are natural numbers and for which

the halting problem is undecidable (that is, there is no algorithm which

decides, for any natural number n, whether M gives or not an answer

(after a �nite time) for the input n). Then, we shall use this machine

20: The fact this forms an a-p system comes from the fact the elements of ERW are

almost everywhere equal.

21: In the sense that we are able to �nd the ith symbol of this word for any i 2 N.
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to construct an a-p word, and show that if this word was e-a-p, then,

by `analyzing' this word, we would be able to decide the halting problem

of M .

First, let us show a general way of constructing a-p words.

Let w be a �nite word on f0; 1g. We denote by w the word obtained by

changing all symbols `0' into `1' and conversely. Also, when w1 and w2

are words, we denote by w1w2 the word obtained by concatenation.

We de�ne by induction a product � on f0; 1g+ (the set of non-empty �nite

words on f0; 1g) in the following way:

u� 0 = u

u� 1 = u

u� (v1v2) = (u� v1)(u� v2)
u; v1; v2 2 f0; 1g+ .

One easily checks that this product is associative. Moreover, given any

words u 2 f0; 1g+ ; v 2 f0; 1g�, the word u � (0v) begins with u. This

implies that if we consider a sequence of words u0; u1; : : : 2 0 f0; 1g�,
in�nitely 22 many of them being of length at least 2, then the sequence

u0; u0 � u1; u0 � u1 � u2; : : : `converges'
23 to an in�nite word of f0; 1g!.

Example 30. Thue-Morse word is obtained as `limit' of the following

iteration:

I t0 = `0'

I ti is made out of ti�1 by replacing each symbol `0' with `01' and each

`1' with `10'.

So Thue-Morse word starts with 0110100110010110 : : : It is easy to show

that it is also the limit of the product 01� 01� 01� � � �

Lemma 31. For any words u0; u1; : : : 2 0f0; 1g�;
the word W = u0 � u1 � � � � is almost-periodic.

22: If there are only �nitely many words of length at least 2, then we obviously get a

�nite word.

23: This means that there exists a unique word W 2 f0; 1g! such that any word of the

sequence is an initial subword of W .
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Proof. | First suppose only �nitely many ui contain a symbol `1'.

Then W is a periodic word. Indeed, let n be such that ui 2 f0g+ for all

i > n. Then

u0 � u1 � � � � = (u0 � � � � � un)� (000 � � �)
= (u0 � � � � � un)(u0 � � � � � un)(u0 � � � � � un) � � �

Now suppose there are in�nitely many ui containing a symbol `1'. Given

a word v 2 f0; 1g� appearing in u0�u1�� � �, let us show that there exists

an almost-period �v . We know that v appears in u0 � � � � � un for some

n. Let p > n be a number such that up contains a `1'. Since v appears in

u0�� � � �up�1, v and v appear in w = u0� � � � �up. Further �nite words
(and thus W itself) are concatenations of w and w, so that v appears

in any of their segment of length 2 jwj. This shows 2 jwj is suitable as

almost-period for v. 2

We now give an algorithm that constructs a decidable non-e�ectively

almost-periodic word W .

Let M be a machine whose halting problem is undecidable and whose

entries are natural numbers (see [4, x3.8] for the existence of such a ma-

chine). Denote by t(n) the answer time of M for the entry n 2 N (with

the convention t(n) =1 if the machine does not answer).

Without loss of generality, we may suppose that for all n 2 N, t(n) > n.

(If M does not satisfy this condition, it suÆces to transform it into a

machine M 0 that loops n times before transmitting the data `n' to M .)

We construct the word W using the program P described on Figure 2,

page 52: this program uses natural variables i and k and �nite string

variables u0; u1; : : : on f0; 1g�. The program P does the following work:

for increasing k's, it initializes the variable uk and looks for the values of

i 6 k such that t(i) = k. Once such an i is found, a new value is assigned

to the variable ui, depending on the actual values of ui; : : : ; uk.

The program also uses a string variable w which always gets the value of

u0 � � � � � uk.

While P is running, the value of w tends to a word of f0; 1g!. Indeed, it
is clear that at any time, all the variables uj (j = 1 : : : k) begin with a `0'.
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k  0

u0  0001

?
k k + 1

uk  0001

i 0

?

t(i)
?
= k

ui  (ui � � � � � uk)0
2jui�����ukj

Yes

i i+ 1

i
?

> k

No

Yes No

�
�

��
Q
Q
QQ�

�
��
Q
Q
QQ

�
�

��
Q
Q
QQ�

�
��
Q
Q
QQ

?

?

?

�

-

Figure 2: The program P .

When k is incremented, the new value of w is w0 = wwww, and w is an

initial segment of w0. Similarly, when the value of a variable ui is changed

into u0
i
= (ui � � � � � uk)0

jui�����ukj, the new value of w contains the old

one as initial segment: let x = u0 � � � � � ui�1. The old value of w is

u0 � � � � � ui�1| {z }
x

�ui � ui+1 � � � � � uk

and the new one is

x� ((ui � � � � � uk)0
jui�����ukj)� ui+1 � � � � � uk
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=
�
(x� (ui � � � � � uk)| {z }

w

)(x� 0jui�����ukj)
�
� ui+1 � � � � � uk

=
�
w �x � � � �x| {z }

jui � � � � � ukj times

�� ui+1 � � � � � uk;

and as the values of ui+1; : : : ; uk all begin with `0', we have the result we

wanted.

It is clear that this program will change the initial value of a variable

ui at most once (when k = t(i)). Let ~ui be the value of the variable ui
after it has been re-assigned, or its initial value if it is never re-assigned.

Clearly, ~un = `0001' if and only if t(n) = 1. Let W be the in�nite word

~u0 � ~u1 � � � �. This word is well de�ned as all ~ui begin with a `0', and by

Lemma 31, W is almost-periodic. Moreover, W is the limit of the values

taken by the variable w, and this shows that W is decidable 24.

The hypothesis on the undecidability of the halting problem forM implies

that it is impossible to know, after P worked some time, which unchanged

variables will be re-assigned later. This is what we shall use in order to

showW is not e�ectively almost-periodic: supposingW is e-a-p and using

an induction on i, we will have an algorithm that gives a time after what

we are sure that the value of ui is ~ui.

Before proceeding with this part, let us show a result on the particular

form of the values that the variables ui can get.

Lemma 32. Let x be the value of a variable ui at some time. Then �x does

not appear in the word xx.

Proof. | Let 
 be the subset of f0; 1g� built inductively by the rules

I 0001 2 
,

I If x 2 
, then x02jxj 2 
,

I If x; y 2 
, then x� y 2 
.

24: In order to decide whether the nth symbol ofW is a `1', it suÆces to let the program

P run until jwj > n. This will eventually happen since jwj is strictly increasing with k.
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We show our lemma for 
 (all the possible values of the variable ui being

in 
.)

I Obviously, 0001 = 1110 does not appear in 00010001,

I Also, for any word x, x02jxj = x12jxj does not appear in x02jxjx02jxj,

I Finally, consider a word x � y with x; y 2 
. Thanks to the associa-

tivity of �, we may suppose y cannot be factorized as a product of

words of 
. So

– if y = 0001, then x� y = xxxx cannot appear in (x� y)(x� y) =
xxxxxxxx using our induction hypothesis,

– if y = z02jzj with z 2 
, then x � y = (x � z)x2jzj and x� y =

x� zx
2jzj. Since jx� zj = jxj jzj = 1

2

��x2jzj��, the word x� y can-

not appear in (x� y)
2
, otherwise x would have to appear in xx,

which is impossible using our induction hypothesis. 2

It remains to prove that W cannot be e-a-p. Suppose it is and let us come

to the algorithm that would allow us to compute ~ui for any i 2 N.

First start with i = 0. Since 0001 appears in W , it appears in�nitely

often. We �nd an almost-period � for 0001 in W . Our algorithm starts

the program P until k = �. At that time, we are sure that u0 = ~u0:

any further modi�cation of u0 would force u0 (and thus W ) to contain a

sequence of symbols `0' of length at least 2� | since ju0 � � � � � ukj > 2k

| but this would contradict the fact � is an almost-period for 0001.

Now, we want to compute ~ui. Using our induction hypothesis, we �rst

compute ~u0; : : : ; ~ui�1. We set Wi = ~u0 � � � � � ~ui�1 and look for an

almost-period � for Wi in W . Since the word ui will contain a `1', Wi

will appear in W and thus will appear in�nitely often. We start P until

k = �+ i. At that time, the value of ui must be equal to ~ui: any further

modi�cation of ui would force it to contain a sequence of `0' of length at

least 2� so that W would contain at least 2� concatenated copies of Wi.

However, the previous lemma tells us that Wi cannot appear in these 2�

copies so that we contradict the fact that � is an almost-period for Wi

in W . 2
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B. Some Examples of Sparse Predicates

Example 33. Let R = R2n be the set of powers of two. Then any operator

A
R can be written under the form A

R(y) = an2
(Sny) + � � � + a02

(S0y) =

(2nan+ � � �+2a1+a0)2
y = c2y. Thus R is e�ectively sparse, since AR 7R

0 , c 7 0 and when c > 0, it suÆces to take � = 1 in order to satisfy

condition P2: 8yAR(Sy)� 2y = (2c� 1)2y > 0.

Of course, this example extends to any predicate of the form Rcn =

fcn j n 2 Ng where c is a natural number > 1.

Counter-example 34. Contrarily to what Semenov writes in [10, p. 410,

ex1], this example does not extend to predicates R such that the rational

sequence
Rj+1

Rj
is periodic. Indeed, let R be the set de�ned by the induction

R0 = 1, R2n+1 = 4R2n, R2n+2 = 2R2n+1 and let AR be the operator

R(S�)�3R(�). We immediately check AR(y) > 0 if y is even, and AR(y) < 0

if y is odd. This contradicts condition 18.P1.

This example also shows that a subset of a sparse predicate does not need

to be sparse itself | our counter-example being a subset of the set of

powers of two.

Example 35. Let us show that any set R such that limj!1
Rj+1

Rj
= 1

is sparse. We know that for any natural number N there exists a � such

that 8j > � :
Rj+1

Rj
> N . Let AR be the operator

P
i=0:::n aiR(Si�) and

let us show that AR 7R 0 , an 7 0. Suppose an > 0 (the argument

is similar if an < 0), let N = 1 +
P
i=0:::n�1 jaij and let � have a value

corresponding to N . Then for any y > �,

A
R(y) > anRSny �

X
i=0:::n�1

jaijRSiy

> RSny �
X

i=0:::n�1
jaijRSn�1y

>

 
N �

X
i=0:::n�1

jaij
!
RSn�1y > 0

so that condition 18.P1 is ful�lled. For condition P2, taking N = 2 +P
i=0:::n�1 jaij, the same computation tells us that for any y, AR(S�y)�
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Ry > 0. When the limit is e�ective, that is, when there exists an algorithm

giving � as a function of N , then R is e�ectively sparse.

This time, any (in�nite) subset R0 of a predicate R of this type remains

sparse, since clearly limj!1
R
0

j+1

R
0

j

= 1. Moreover, if R is e�ectively

sparse, then so is R0, because the same algorithm still works.

Example 36. The predicate Rn! = fn! j n 2 Ng is e�ectively sparse (it

suÆces to take � = N in the previous example) and so is any subset of it.

Example 37. LetRFib be the set of Fibonacci numbers f1; 2; 3; 5; 8; 13; : : :g.
These are recursively de�ned by R0 = 1; R1 = 2; Rn+2 = Rn+Rn+1. One

also shows that they are obtained as images of the function

Rn =
1p
5

0
@ 1 +

p
5

2

!n+2
�

 
1�p5

2

!n+21A .

Notice that this implies that for any n, �
n+2

p
5
� 1 < Rn <

�
n+2

p
5

+ 1 where

� = 1+
p
5

2
.

Using the induction rule, any operator AR can be written as

A
R(y) = anR(Sny) + � � �+ a0Ry

= (an + an�1)R(Sn�1y) + (an + an�2)R(Sn�2y)

+an�3R(Sn�3y) + � � �+ a0Ry

= � � � = c1RSy + c2Ry:

(20)

If c1 = 0, then we may e�ectively �nd out which condition P1 is satis�ed

and what is the � of P2, just like in Example 33.

Otherwise, we have that

A
R(y) 7 0 , c1RSy 7 �c2Ry

, RSy

Ry

7
�c2
c1

:
(21)

Since limy!1
RSy

Ry
= �, we have AR 7R 0, � 7 �c2

c1
, and this determines

P1.
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Suppose AR >R 0. In order to satisfy P2, we need to �nd a � such that

for any y,

0 < A
R(S�y)�Ry.

It suÆces to �nd a � such that R0 = 1 < A
R(�) and such that the growth

of AR(S��) is greater than that of R(�). The �rst condition is

1 < c1R�+1 + c2R�

and using the bounds �
n+2

p
5
�1 < Rn <

�
n+2

p
5
+1, it suÆces to �nd � such

that

1 < c1

�
�+3

p
5
� jc1j+ c2

�
�+2

p
5
� jc2j

,
p
5 (1 + jc1j+ jc2j) < c1�

�+3 + c2�
�+2

,
p
5 (1 + jc1j+ jc2j)
c1�

3 + c2�
2

< �
�
:

(22)

(we may divide by c1�
3+ c2�

2 without changing the signs since AR >R 0,

so that c1�+ c2 > 0.) Now, in order to have that AR(�) > R0, it suÆces

to have

� > log �

p
5 (1 + jc1j+ jc2j)
c1�

3 + c2�
2

. (23)

The second condition on � requires that for any y,

A
R(S�+1

y)�A
R(S�y) > RSy � Ry

, A
R(S��1y) > RS�1y

, c1RS�y + c2RS��1y > RS�1y

(24)

and using the same bounds as before, it suÆces to have

c1
�
�+y+2

p
5

� jc1j+ c2
�
�+y+1

p
5

� jc2j > �
y+1

p
5

+ 1

, �
�
�
y+1(c1�+ c2) > �

y+1 +
p
5 (jc1j+ jc2j+ 1) :

(25)

Again, we know that c1�+ c2 > 0, and thus the condition becomes

� > log
�

 
1

(c1�+ c2)

�
1 +

p
5

�y+1
(jc1j+ jc2j+ 1)

�!
: (26)
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Since the function 1
�y+1

is decreasing, the right member of this inequality

gets its maximum value for y = 0.

The value of � we need to �nd can be taken as the �rst natural number

greater than both (23) and (26) (computed in y = 0), and this concludes

the proof that RFib is an e�ectively sparse predicate.
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1. Introduction

Let P be the set of prime numbers. In 1993, P.T. Bateman, C.G. Jockusch

and A.R. Woods [1] showed that the linear case of Schinzel's Hypothe-

sis (H) implies the undecidability of the �rst order theory of h!; +; P i.

Bateman, Jockusch and Woods gave two proofs of their result: the �rst

one shows that the multiplication is de�nable in h!; +; P i by de�ning

the range of a polynomial g of degree two; the second one shows that

a `substructure 2' isomorphic to h!; +; �i is de�nable in h!; +; P i. The

de�nability argument is closely related to the existence of sequences (of

quadratic growth in the �rst case and of linear growth in the second case)

of consecutive elements of P .

In 1996, M. Bo�a [2] extended the �rst proof in order to show that (H)

also implies the undecidability of the �rst order theory of h!; +; Pm;ri.

1: Aspirant du Fonds national belge de la recherche scienti�que.

2: More precisely, the domain of this structure is the quotient of a de�nable set by a

de�nable equivalence relation, and the graphs of the functions + and � are de�ned on

the classes of this equivalence relation.
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Here, Pm;r is the set fp 2 P j p � r(modm)g where m and r are natural

numbers, m > 2, r < m and r is prime to m. His argument consists

in modifying the proof of Bateman & al. by carefully choosing another

polynomial g (of degree �(m), where � is Euler's totient function). As

a consequence, the considered sequences of elements of Pm;r grow faster

and their elements are no more consecutive in Pm;r, but are separated by

a �xed number of elements of Pm;r.

In order to show Bo�a's result again, we modify a preliminary lemma of

[1]. This will enable us to remain as close as possible to the two original

proofs of Bateman & al. In particular, we keep polynomials of degree two

and sequences of quadratic or linear growth.

2. Basic Definitions and Preliminary Lemma

Definition 1. Let P be the set of prime numbers. Let m > 2 and r < m

be two mutually prime natural numbers.

We set Pm;r = fp 2 P j p � r(modm)g.

Conjecture: Schinzel's Hypothesis (H). Let f1(x); : : : ; fn(x) be irreduci-

ble polynomials over Z, each having a positive leading coeÆcient.

Suppose that there is no prime p which divides f1(x) � f2(x) � � � fn(x)
for all x 2 !. Then there exist in�nitely many x 2 ! such that

f1(x); f2(x); : : : ; fn(x) are all prime.

The linear case of (H) is the case in which the fi(x) are all linear and

have the same leading coeÆcient.

The following technical lemma is based on Lemma 1 of [1].

Lemma 2. Assume the linear case of (H). Let m and r be as before, let

b0; b1; : : : ; bn be an increasing sequence of natural numbers, and as-

sume that:

(a) there is no prime p such that

fbi(mod p); 0 6 i 6 ng = f0; 1; : : : ; p� 1g;
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(b) bi � bj(modm) for all 0 6 i; j 6 n.

Then there are in�nitely many natural numbers a such that a+b0; a+

b1; : : : ; a+ bn are consecutive in Pm;r.

Proof. | We follow the proof of [1, Lemma 1].

Let a1 < � � � < as be the integers between b0 and bn which are not of

the form bi for any i 6 n. We shall show that there exist in�nitely many

integers a such that

a+ ai 62 P ; (1)

a+ bj 2 Pm;r: (2)

Let pi denote the ith prime, and let c = mp1p2 : : : p(Æ+1+s) with Æ =

maxfbn; pkg where pk is the greatest prime factor of m. We want to

use (H) for the following polynomials:

fj(x) = cx+ a0 + bj ; (3)

where a0 will be chosen later.

We shall then choose a to be cx+ a0.

In order to ensure (2) (using (b) and the fact that mjc), we require that:

a0 + b0 � r (modm): (4)

In order to ensure (1) (with the same argument as in [1]), we require that

a0 satis�es

a0 � �ai (mod p(Æ+1+i)) (i = 1; 2; : : : ; s): (5)

To ensure that Schinzel's hypothesis applies for the fj(x), we also require

that:

a0 6� �bj (mod pi) (j = 0; 1; : : : ; n) (6)

for each i = 1; 2; : : : ; s such that pi is not a prime factor of m.

To prove that Schinzel's hypothesis applies for the fj(x), we may restrict

attention, as in [1], to primes p 6 p(Æ+1+s).
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If p is a prime factor of m, note that pjc. So

nY
j=0

fj(x) �
nY

j=0

(a0 + bj) (mod p)

and so, by condition (b),

nY
j=0

fj(x) �
nY

j=0

(a0 + b0) (mod p):

(4) ensures us that this is not � 0 (mod p). Therefore

p -

nY
j=0

fj(x).

If p = p(Æ+1+i) for some i = 1; 2; : : : ; s or if p = pi for i = 1; 2; : : : ; s such

that pi is not a prime factor of m, the proofs are similar as in [1, Lemma

1], using, respectively, (5) and (6).

Note that (6) has a solution by hypothesis (a), therefore the Chinese Re-

mainder Theorem gives an a0 satisfying (4), (5) and (6). 2

3. First Proof of Theorem 3

Theorem 3. Assume the linear case of (H). Then the �rst order theory of

h!; +; Pm;ri is undecidable. ([2])

Recall the following theorem (B�uchi):

for any polynomial g(x) of degree at least two with coeÆcients

from !, the multiplication is de�nable in h!; +; Im(g)i and there-

fore, by Church's Theorem, h!; +; Im(g)i is undecidable.

Proof of Theorem 3. | The polynomial g(x) = m(x2+x), easily, satis�es

the hypotheses of B�uchi's theorem. So it suÆces to prove that Im(g) is

de�nable in h!; +; Pm;ri . The proof is similar as in Theorem 1 of [1].
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De�ne T (a; b) to hold i�

(9n > 1)[a+ g(n) = b

^ a+ g(0); a+ g(1); : : : ; a+ g(n) are consecutive in Pm;r]:

T is de�nable in h!; +; Pm;ri because T (a; b) holds if and only if a; a+2m

and b are all in Pm;r, a +m is not in Pm;r, and (e � d) � (d � c) = 2m

whenever c; d; e are consecutive in Pm;r \ [a; b] with c < d < e.

The end of the proof is identical as in [1, Theorem 1], de�ning Im(g) by:

k 2 Im(g) () (9a) T (a; a+ k) _ k = 0

and using Lemma 2. 2

4. Second Proof of Theorem 3

We now want to prove Theorem 3 like in [1, x4]. This will result from the

following theorem (similar to [1, Theorem 2]):

Theorem 4. Let m 6= 0 be a natural number and let R be a predicate

satisfying the following property for any d; l 2 ! with l > m:

(?)

(
There exist in�nitely many numbers a such that a; a+ d; : : : ; a+

(l � 1)d are consecutive elements of R if and only if mjd and pjd
for all primes p 6 l.

Then the �rst-order theory of the structure h!; +; Ri is undecidable.

Proof of Theorem 3 using Theorem 4. | It suÆces to show that Pm;r

satis�es (?).

The `if' part is an immediate consequence of Lemma 2 (with bi = i�d). The
`only if' part is obvious since Pm;r � P and that a; a+ d; : : : ; a+ (l� 1)d

have to be congruent mod m. 2

Proof of Theorem 4. | It suÆces to show that the predicateD(x; y) used

in [1, Theorem 2] is de�nable by a �rst order formula and to continue with

the same proof.
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Recall that D(x; y) is the predicate

x > 0 ^ (9n > 1) (9l > 1)
�
�njx ^ l < pn+1 ^ y = (l � 1)x

�
where �n=p1 � � � pn.

We may de�ne a predicate D0(x; y) by the �rst-order formula:

x > 0 ^ y > x+ � � �+ x| {z }
m� 1 times

^ 8r9a
h�
a 6 s < a+ y ^ R(s)

�
)

�
R(s+ x) ^ 8t

�
0 < t < x) :R(s+ t)

��ii
:

This predicate means that y is a multiple of x > 0, say y=x = l � 1 with

l > m, and that there are in�nitely many a such that a; a+x; : : : ; a+(l�
1)x = a+ y are consecutive elements of R.

Using (?), this predicate is equivalent to

x > 0 ^ mjx ^ (9n > 1) (9l > m)
�
�njx ^ l < pn+1 ^ y = (l � 1)x

�
:

We see that there are two families of elements missing from D0 in order

to get D. These are:

(a) the pairs (x; y) such that

x > 0 ^ (9n > 1) (91 6 l < m)
�
�njx ^ l < pn+1 ^ y = (l � 1)x

�
;

(b) the pairs (x; y) such that

x > 0 ^ m - x ^ (9n > 1) (9l > m)
�
�njx ^ l < pn+1^y = (l�1)x

�
:

We may de�ne the �rst family by testing whether, for some l = 1 : : :m�1,

we have

x > 0 ^ (9n > 1)
�
�n j x ^ l < pn+1 ^ y = (l � 1)x

�
:
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Denote by h the computable function h(l) = minfi : l < pi+1g. Then

the previous formula is equivalent to

x > 0 ^ �h(l)jx ^ y = (l � 1)x:

This allows us to de�ne the �rst family by a �nite disjunction.

We now look at the second family. Suppose m factorizes as p�1
�1
� � � p�u

�u
.

Then we have the following equivalences:

x 6�m 0 ^ (9n > 1) (9l > m)
�
�njx ^ l < pn+1 ^ y = (l � 1)x

�
m (1)

x 6�m 0 ^ x �p�1
���p�u

0

^ (9n > 1) (9l > m)
�
�njmx ^ l < pn+1 ^ my = (l � 1)mx

�
m (2)

x 6�m 0 ^ x �p�1
���p�u

0 ^ D0(mx;my).

Indeed, (1) can be deduced from the fact that (m < pn+1 and �njx) im-

plies p�1� � � p�u jx, so that no new factors are added when we replace x and

y by mx and my. Thus any l and n acceptable to D0 are still acceptable

to D, i.e. we only add pairs of D. The de�nition of D0 gives (2).

As a conclusion, we may de�ne D(x; y) by the �rst-order formula

D(x; y) , D0(x; y) _ (x �p�1
���p�u

0 ^D0(mx;my))

_
_

l=1:::m�1

(x > 0 ^ �h(l)jx ^ y = (l � 1)x):

2
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1. Abstract

The notion of a function, computable by a Turing machine on a given set

of words is de�ned. It is proved that this notion is very sensitive to the

de�nition of a computation, in particular for universal Turing machines.

Indeed, it is proved that there are universal machines which cannot com-

pute any function on any set. An example is given of a machine which

possesses this property and which cannot be replaced by a machine com-

puting a function on a set of con�gurations where the former machine

halts.

2. Introduction

A Turing machine is an algorithm which transforms sequences of symbols

or words written on the cells of its tape. A cell which does not contain

any symbol is said empty. This situation is marked by a particular symbol

called blank symbol, or short, the blank. Applying that algorithm to a word

written on consecutive cells of the tape, i.e to a word which contains no
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blanks, de�nes a function on the set of all these words, provided that the

position of the machine head on the tape and its state are �xed when the

computation starts.

For such computations, the notions of pre�x or suÆx of the initial word,

of blank and of empty tape are natural. From that, a certain number of

properties ensue which are speci�c to those transformations.

Each function de�ned in that way can be computed by a Turing machine

which extends its computation only in the following case: the cells scanned

during the computation which were out of the initial word, were empty at

the time when the computation has started; also the set of words to which

the algorithm is applied is recursive.

In this paper, we study the question whether computation still possess

the above properties when it is allowed that the �nite sequence of symbols

written on the tape at the initial time may contain blanks. In particular,

we study properties of universal Turing machines in this point of view.

It is thus proved that the set of con�gurations used by a universal Turing

machine for modelling other computations may be non-recursive. In this

paper, we introduce the notion of machine computing a function on a set

with the help of the empty tape. We prove that there are such machines

for which the corresponding set of con�gurations is not recursively enu-

merable. Applying this result to a particular universal Turing machine, we

obtain that there is a universal Turing machine which does not compute

a function on any set. Moreover, this machine cannot be replaced by an-

other machine which would compute a function on a set of con�gurations

on which the former machine could be applied.

3. Conventions and Notations

We begin by recalling de�nitions on the computation of a Turing machine.

First, de�ne the notion of con�guration. This notion is intuitively clear.

The con�guration consists of what is on the machine tape at a given time

together with the supplementary information of the position of the ma-

chine head and its state while reading the scanned cell. It is more delicate

to formalize this notion: we �rst need to de�ne the initial con�guration,
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or starting con�guration |we shall distinguish between both notions|

then, step by step, to de�ne the current con�guration starting from the

previous current con�guration, the �rst current one being a starting con-

�guration.

Assume the tape to be in�nite only on the right side. Assume that there

is a one-to-one mapping from N onto the cells of the tape. The integer

thus associated to a cell is called its address. Most often, the cell with x

as address will be called cell x. Assume that the address of the leftmost

cell is 0, that cell x + 1 is the immediate right neighbour of cell x, and

that cell x � 1 is the immediate left neighbour of cell x. Assume we have

also at our disposal a function �(x; t) which gives the content of cell x at

time t. When time t is already known from the context, we shall write

simply �(x) instead of �(x; t).

It is assumed that all possible values of �(x; t) belong to a �xed �nite set,

characteristic of the considered machine. This set is called the machine

alphabet and is denoted by A in the sequel. Choose one letter among those

of A to be called the blank denoted by .

Consider now the smallest integer N such that at initial time 0, �(x) =

holds for all x > N . The support of the starting con�guration is consti-

tuted of word �(0) : : : �(N�1), possibly empty. The starting con�guration

is de�ned by giving the smallest integerK such that at the initial time the

address of any cell belonging to the support including the scanned cell is

less than K, the address x of the scanned cell, and the state under which

the machine is at initial time 0. The starting con�guration can be encoded

as a word of the form uqiv where u; v 2 A
�, juvj = N , juj = x and qi 2 Q,

Q denoting the �nite set of the machine states fq0; q1; : : : ; qsg.

By convention, state q0 is the �nal state: when the machine is under that

state it halts. Call q1 the initial state. Call a starting con�guration initial

if the machine state at the initial time is q1.

The current con�guration of the machine at time t is de�ned by induction

on t. For t = 0, it is the starting con�guration. Assume the current

con�guration to be encoded by uqiv at time t, with qi as the current state

at that time. Denote v(t) the address of the cell scanned at time t. Notice

that v(t) = juj. Let qi�M�qj be the instruction to be performed at time

t+ 1. The current con�guration at time t + 1 is encoded by u1qjv1 with



72 M. MARGENSTERN and L. PAVLOTSKA IA

ju1j = v(t + 1) and �(x; t + 1) = �(x; t) for all x except v(t), and for

x = v(t) we have: �(x; t) = � and �(x; t + 1) = �. Integer juvj is the

current bound of the con�guration at time t. Denote that current bound

by `(t).

Call a current con�guration �nal if and only if the current state is �nal

state q0. There is no current con�guration after a �nal con�guration.

Say that a starting con�guration is a halting con�guration if and only if

the sequence of the following current con�gurations is �nite and if the last

con�guration of the sequence is a �nal one and if, during the computation,

the machine head scanned any cell with as address an integer less than

the starting bound. This latter condition is formally written as:

8x (x < `(0)) 9t (t 6 tf ^ v(t) = x)):

where tf is the time when the �nal state is reached.

4. Universal Machines on a Set

Let Z denote a Turing machine. Denote by Zend the set of its halting

con�gurations.

Let G a �xed G�odel numbering of machine Z con�gurations.

Definition 1.
Call machine Z universal if and only if set G(Zend ) is m-complete.

If machine Z is universal in that sense, see [1], there is a total recursive

function f with two arguments such that the set of Un = fx : f(n; x) 2

G(Zend )g contains all recursively enumerable sets. Say then that f is an

encoding function for machine Z. Set KZ;f = G
�1(Imf).

Definition 2. Say that universal machine Z is universal on set E of con-

�gurations if and only if there is an encoding function f for Z such

that E = KZ;f .

Theorem 3.
Any universal machine Z is universal on a set containing Zend .



ON TUR ING COMPUTABLE FUNCT IONS 73

Proof. | Let f be an encoding function for Z. Then, KZ;f \ Zend is

in�nite. There is a total recursive function d which enumerates elements

of G(Zend ). Accordingly, let c, ` and r be a recursive encoding of couples

of integers: if u = c(n; x), then n = `(u), x = r(u) and conversly. Let

'(u) = f(`(u); r(u)). As Im' = Im f and Im'\ Im d is in�nite, there are

two total recursive increasing functions h and k such that for all natural

number n, '(h(n)) = d(k(n)) and '(h(n)) < '(h(n + 1). De�ne then '
�

by:

'
�(n) =

(
'(n) if n 62 Imh

d(j) if n = h(j).

In these conditions, G(Zend ) = Im d � Im'
�. Let then f

�(n; x) =

'
�(c(n; x)). Function f

� is then an encoding function for Z. Indeed,

let

U
�

n = fx : f�(n; x) 2 G(Zend )g:

It is not diÆcult to prove that Un = U
�

n: ' and '
� take identical values

when n 62 Imh and when this is not the case, n = h(j) for some j.

Consequently, '�(n) = d(j) and '(n) = d(k(j)). These latter two values

are thus simultaneously in G(Zend ). Moreover, as KZ;f� = G
�1(Im f

�),

which contains Zend since Im f
�
� Im d, set KZ;f� satis�es de�nition 2.

2

Consider now a partial recursive function f whose domain, say dom f , is

m-complete. It is possible to construct a Turing machine F on alphabet

f0; 1g such that Fend � fq101
n : n 2 dom fg, that Fend \ fq101

n : n 62

dom fg = ? and such that F applied to q101
n for n 2 dom f computes

q�01
f(n) where q� is the halting state of machine F .

Let us denote by s(n) the space used by machine F to compute f(n).

Notice that s is a partial recursive function, that its domain of de�nition

is the same as for f and that s(n) > n for any natural number n where f

is de�ned (else, if s(n0) 6 n0 for some natural number n0, F provides the

same result for all n > n0 and thus, F cannot compute f).

Let us construct machine F1 as described in Figure 1 (page 74).

Then,

F1;end � f�101
n0x1 : : : xr : n 2 dom f; xi 2 f0; 1g; r+ n+ 2 6 s(n)g
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0 1 �0

�1 R�2

�2 �0L�3 R

�3 Sq1 L

qi F 0R�i

�i �0Lqi �0Lqi

In this table, the action performed by the machine under state i while

reading x in the scanned cell is denoted yMj where y = output symbol,

M = move performed by the machine head, j = new state of the head.

Move M is R, L or S according to whether the head goes to the right

cell, the left one or stays on the same cell. If y = x, y is omitted. Same

convention for the new state.

Figure 1: Table of machine F1.

and

F1;end \ f�101
n0x1 : : : xr : n 62 dom f; xi 2 f0; 1g; r 2 Ng = ?:

Consider the mapping which associates con�guration uqiv�0 of machine F1
to con�guration uqiv of machine F . This de�nes a function � through

function G such that x 2 G(Fend ) , �(x) 2 G(F1end ). This proves that

machine F1 is universal.

Theorem 4. There is a non-recursive set of codes on which machine F1 is

universal.

Proof. | Let �1 be an encoding of all con�gurations of F1. As F1
is universal, there is a total recursive function � such that if Vn = fx :

�(n; x) 2 �1(F1end)g, then the set of Vn's contains all recursively enu-

merable sets. Let �� be the function obtained from � as in the proof of

theorem 3. Let K = f�
�(n; x)g. K is a set of con�guration encodings and,

by construction of ��, machine F1 is universal on K. Let us prove that
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K is a non recursive recursively enumerable set. It is obvious that K is a

recursively enumerable set as a range of a partial recursive function.

Assume K recursive.

Let then q101
u be a con�guration on which machine F halts. In that

case, �101
u
2 F1end . Thus, there are natural numbers n and x such that

�
�(n; x) = �1(�101

u) 2 G(F1end ) since K contains G(F1end ) according to

theorem 3. Consequently, �1(�101
u) 2 K.

Assume now that F does not halt on q101
u. Machine F1 neither halts

on �101
u0. Assume that �1(�101

u) = �
�(n; x) for some couple n; x. As

�1(�101
u) 62 G(F1end ), �

�(n; x) = �(n; x) by construction of ��.

In the proof of the universality of machine F1, function � can be taken as

equal to �1(�101
g(n;x)0), where g(n; x) is associated to them-completeness

of dom f . Thus, ��(n; x) is the encoding of some con�guration �101
v0.

Now, we assumed that ��(n; x) = �1(�101
u). As �1 is a one-to-one map-

ping, there is a contradiction.

Consequently, if F1 does not halt on �101
u, �1(�101

u) 62 K. Then if K

were recursive, the halting of F on con�gurations q101
u would be decid-

able, which is impossible. 2

5. Machines Computing a Function on a Set

Consider now a Turing machine Z on alphabet A. Fix a word w of A� and

observe the computation of Z starting from the con�guration q1w. Say

that the machine goes out from this word if the sequence of computations

leads to a �rst time t for which v(t) = jwj. If the machine does not halt

before such a time or if its computation is not interrupted before it, that

time can either be �nite or in�nite.

It then ensues that the computation of Z starting from con�guration q1w

leads to any one of the following �ve possibilities:

I the machine computation leads to a con�guration of the form uqj with

jwj = juj, which is the case of an exit;

I the machine computation endlessly goes on within the space de�ned by
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word w: for all time t, v(t) < jwj; this is a case when the computation

time of the machine on w is in�nite;

I con�guration q1w is a halting con�guration; in that case, say that the

computation of Z on w is determined;

I the machine computation halts and the head did not visit all cells with

an address less than jwj;

I the machine computation is interrupted under state qj on a cell con-

taining xi because the program of Z contains no instruction associated

to couple qjxi.

Each of these possibilities is recursively enumerable and no other one can

occur. Among these possibilities, call undetermined any one of them which

is di�erent from the case of a determined computation.

Give a special status to the �rst one and the third one of the above listed

cases by setting:

Definition 5. Let Z be a Turing machine on alphabet A. Call domain of

applicability of Z the set AZ of words w of A� such that the machine

computation starting from con�guration q1w leads to a con�guration

of the form uqj with jwj = juj.

In the case when the computation on a word of the applicability domain

goes out of that word, there are several ways of going on the computation.

As in the classical de�nitions, one can consider that the machine meets a

cell containing the blank, which boils down to take uqj as a starting

con�guration. One can also consider that a cell is appended to the tape

or that a letter is appended to word uqj . This time, that letter or cell

content can be any letter of alphabet A. Intuitively, the computation of Z

on w has been extended. In order to make this notion more precise, if w is

a �nite or in�nite word on A and k is a natural number with 0 6 k 6 jwj,

denote by wjk the unique word u of length k such that w = uv, for some

word v on A. It is now possible to state the following de�nition:

Definition 6. Let Z be a Turing machine on alphabet A and w 2 AZ .

Call extension of the computation on w any �nite or in�nite word y

on A such that for all k with 0 6 k 6 jyj, w(yjk) 2 AZ .
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This allows us to introduce the notion of computing a function on a set

by a Turing machine.

Definition 7. Let Z be a Turing machine on alphabet A and E be a set of

�nite words on A. Say that Z computes a function on E if and only

if set E satis�es to the following conditions:

(a) E � AZ ;

(b) if the computation of Z on w is undetermined, w has at most one

extension;

(c) for all w 2 AZ :

I a either w 2 E;

I or there is y 2 E such that w is a non empty pre�x of y;

I or there is y 2 E such that y is a strict pre�x of w.

This de�nition coincides with the traditional one of the computation of a

partial recursive function by a Turing machine. Indeed, the rôle of set E

is then played by the con�gurations encoding natural numbers or n-tuples

of natural numbers. The de�nition we suggest here deals with the sta-

tus which should be given to the undetermined computations which do

not lead to a halting con�guration. In that case, the domains of de�ni-

tion of computed functions as well as the functions themselves may have

properties di�erent from the classical ones.

Theorem 8. Whatever set E is, machine F1 computes no function on E.

Proof. | Let E be a set and assume that F1 computes a function on E.

Then E � AF1 and E has properties (b) and (c) of de�nition 7. Let m be

such that F1 does not halt on q101
m0 and that F1 does not cycle during

that computation (this can always be assumed). Then q101
m0 2 AF1 and

for all x 2 f0; 1g�, q101
m0x 2 AF1 . If q101

m0x extends a word of E, this

is also the case for all q101
m0xy for all y 2 f0; 1g�. This is a contradiction

with the uniqueness of extension (point (b) on above de�nition). For the

same reason, q101
m0x cannot be extended by a word of E and it cannot

neither extend a word of E. 2
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Let Sn = f01n0x : jxj+ n+ 2 = s(n); x 2 f0; 1g�g for n 2 dom f and set

S =
[

n2dom f

Sn. Notice that, by construction of F1, S � AF1 .

Lemma 9. IfG is a machine computing a function onE with AG � f0; 1g�,

then S 6� AG.

Proof. | Assume G to be a machine computing a function on E with

AG � f0; 1g� and S � AG. There is a shortest x in word length such that:

I either the computation of G on 01n0x is determined,

I or 01n0y with jyj > jxj has several extensions in AG.

If the computation on 01n0x is determined, we have:

01n0xw 62 AG (1)

for jwj > 1.

If F1 does not halt on 01n0y for some y such that jyj 6 jxj, then it does

not halt: otherwise, the machine would halt on any word 01n0xz 2 Sn

with jzj > 1. Since S � AG is assumed, that would be a contradiction

to (1).

If 01n0x has a unique extension in AG, consider 01n0y with y = x�,

where � 2 A, the machine alphabet, and � is chosen in a such way that

01n0y is not the restriction of the extension of 01n0x in AG. Then, by

uniqueness of the extension in AG, the computation of G on 01n0y is not

determined. If the computation of F1 on 01n0y would ultimately halt,

then that computation would be determined on 01n0yz for some z with

jzj > 1. But then, as S � AG, 01
n0yz would be in AG, a contradiction

with the uniqueness of the extension of 01n0x in AG.

If F1 halts on 01n0, there is an x such that 01n0x 2 S and so, the com-

putation of G on 01n0x has a unique extension in AG. Necessarily, jxj is

unique with this property.

If F1 does not halt on 01
n0, it does not halt neither on any 01n0y, whatever

y is in A
�. Now, there is a shortest x such that either the computation

of G is determined on x or 01n0y, with jyj > jxj has several extensions

in AG.
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As AG is recursive by construction, it can be seen that those computa-

tions make it possible to decide the halting of F1 on words 01n0, which is

impossible. 2

As a �rst corollary of the lemma, we get the following result:

Theorem 10. There is no machine G with AG � f0; 1g� which would

compute a function an a set E containing f�101
n0xgend = F1end \

f�101
n0xg.

Proof. | Indeed, S � f�101
n0xgend . If G computes a function on E

containing f�101
n0xgend , we get that S � AG since E � AG, by de�nition

of the notion of computation on E. Then S � AG, which is a contradiction

with the lemma. 2

As a second corollary, we get:

Theorem 11. There is no machine G with AG � f0; 1g� which would

compute a function on a set E and such that Gend would contain

f�101
n0xgend .

Proof. | If G would exist with Gend � f�101
n0xgend , it could be

inferred that G � AG as far as S � f�101
n0xgend . 2

6. Computations with the Empty Tape

Let us turn back to the notion of computing a function on a set by a

Turing machine.

Definition 12. Say that set E is a functional domain if there is a Turing

machine which computes a funtion on E.

The following result can then be proved:

Theorem 13. Any recursively enumerable functional domain is recursive.

Proof. | Let Z be a Turing machine computing a function on functional

domain E assumed to be recursively enumerable. By construction, AZ ,

the applicability domain of Z, is recursive.
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By construction, if x 62 AZ , then x 62 E. Consider now x 2 AZ . By

enumerating the words of E, we get either a y 2 E such that y = x, or

a y 2 E such that x is a pre�x of y or such that y is a pre�x of x. 2

Definition 14. Let Z be a Turing machine on alphabet A. Say that

Z computes a funtion on E with the empty tape if and only if Z

computes a function on E and if any word in AZ with a pre�x in E is

of the form xx0
n where x 2 E and x0 2 A is a �xed symbol considered

as the blank.

The following result can then be proved:

Theorem 15. There is a Turing machine Z and a non recursively enumer-

able set E such that Z computes a function on E with the empty

tape.

Proof. | Consider machine F , constructed in x4 which transforms the

starting con�guration q101
n into the �nal con�guration q001

f(n), where f

is a partial recursive function whose domain of de�nition is m-complete.

As in x4, let function s(n) denote the space of the computation of F on

data n. Take as E the set constituted of the union of the set of 01n0's

for n 62 domf and of the set of 01n0s(n)�n�21's for n 2 dom f . Set E

is not recursively enumerable: otherwise, enumerating its elements would

provide a decision algorithm for membership to dom f which is not a

recursive set.

Starting from machine F , one constructs machine F2 whose program is

given in Figure 2 (page 81).

Notice that, contrary to machine F1, machine F2 has a di�erent behaviour

according to the symbol which it meets beyond the right end of the initial

word: either 1 or 0. The machine writes, correspondingly, �1 or �0. When

later it again meets �0, the machine behaves as machine F1. If then it

meets �1, it halts.

Notice that AF2 contains �101
n for all n. Notice also that the latter set

also contains �101
n0k for all k if n 62 dom f , for all k with 1 6 k 6 s(n)

if n 2 dom f . In that latter case, AF2 also contains �101
n0k. Moreover,

AF2 contains precisely the just indicated elements. It is then clear that

E � AF2 and that E also satis�es properties (c) of de�nition 7. Besides, if
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0 1 �0 �1

�1 R�2

�2 �0L�3 R

�3 Sq1 L

qi F 0R�i oS��

�i �0Lqi �1Lqi

Figure 2: Table of machine F2.

x 2 AF2 has a strict pre�x in E, it then ensues from the above de�nition

of AF2 that x is of the form �101
n0k. Consequently, here 0 plays the rôle

of blank. Thus, machine F2 computes a function on E with the empty

tape. 2

That result can be reformulated in a di�erent way, from \the point of view

of the function".

Let Z be a Turing machine computing a function on set E with the empty

tape. Fix a numbering Æ(x) of all the words on alphabet X . De�ne Eend

as the set of words of E on which the computation of the machine is either

determined or has a �nite extension. Consider function fZ;Æ(n) de�ned as

follows:

I if n 2 Æ(Eend), then fZ;Æ(n) is de�ned and fZ;Æ(n) = Æ(w) where w is

the result of the computation of Z on Æ
�1(n);

I if n 62 Æ(Eend), then fZ;Æ(n) is not de�ned.

This de�nition of a function computed by a Turing machine coincides with

the traditional de�nition of the computation of a partial recursive function

by a Turing machine. We can state:

Theorem 16. For any partial recursive function ', there is a Turing ma-

chine Z such that machine Z computes ' on the set of con�gurations

q101
n0 with the empty tape.
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0 1 �0

�1 R�2

�2 �0L�3 R

�3 Sq1 L

qi M 0R�i

�i �0Lqi

Figure 3: Table of machine M2.

Proof. | Let ' be a partial recursive function. Denote by M a Turing

machine on f0; 1g in the classical sense, transforming any con�guration

q101
n0 where n 2 dom' into con�guration q001

'(n)0 and which does not

halt its computation on any con�guration q101
n0 such that n 62 dom',

where q1 is the initial state of M and q0 its �nal state. Such a machine is

easily obtained through the construction performed in [2].

Let then M2 be the machine whose program is given by Figure 3.

It is then clear that the applicatibility domain of machine M2 is the set

of con�gurations of the form q101
n00k1. The machine computation is

interrupted when the head reads symbol 1 under any one of states �i,

as there is no corresponding instruction. For fZ;Æ , the computation gives

' by taking any recursive encoding of the words on f0; 1g as well as its

inverse. 2

Let us now turn back to machine F2 of theorem 15. If we take the following

mapping on E for numbering Æ:

Æ(q101
n0) = n

Æ(q101
n0s(n)�n�20) = n; if n 2 dom f

then F2 computes f on E with the empty tape. Notice that on this set,

the just de�ned numbering Æ has no recursive inverse on N. However, Æ

has an inverse on set Eend, which can be extended to a recursive function.
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1. Introduction

Let R = (rn) be a strictly increasing sequence of natural numbers with

r0 = 1. We denote by the same letter, the unary predicate R(x) expressing

that x belongs to the sequence R; let S be the successor function on R

i.e. S(rn) = rn+1. We will consider two kinds of extensions of Presburger

arithmetic, namely hN;+; Ri and hN; <;Ri and under certain conditions

on R, we will prove relative quanti�er elimination results.

Let n be a natural number, there exists k > 0 such that rk 6 n < rk+1;

write n = xk � rk + qk with xk , qk in N and qk < rk. We associate in this

way a �nite sequence of non zero natural numbers xkm0
imxkm�1

: : : xk0
to n, where xkm = xk and 0ij denotes a sequence of ij zeros ij natural

number. Let us denote the set of those �nite sequences by L(R). Let

VR be the unary function sending n to rk0 , the least rj appearing in that

decomposition of n in base R (obtained using the Euclidean algorithm),

let �R be the unary function sending n to rk, the largest rj appearing in

that decomposition i.e. rk 6 n < rk+1 and �nally let fR be the function

1: Senior Research Associate, F.N.R.S.
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sending each natural number n to the nth element rn of the sequence R.

For R a sparse unary predicate, A.L. Semenov proves that the theory

ThhN;+; R; Si is existential (see [12, Theorem 3]). His proof is syntactic,

here we will give a model theoretic proof, using the same strategy as

van den Dries when proving that hN;+; .�; <; 0; 1; �=n;n 2 ! � f0g; �2i
admits quanti�er elimination (see [16] and [15]). The condition of (almost)

sparsity on a sequence R in order to get ThhN;+; R; Si existential is not
necessary as shows the example of the sequence R = (n+2n) which is not

sparse but such that ThhN;+; (n +2n); Si is existentially bi-interpretable

with ThhN;+; n 7! 2ni, the later theory being existential (see [13]).

Then, we will discuss under which conditions a sequence R is (almost)

sparse. However, we will always assume that the sequence (rn+1=rn) has

a limit. If this limit is in�nite, then the sequence is sparse as Semenov

shows (see [12]). We will show that if R satis�es �rst the A. Bertrand

conditions which imply that asymptotically it looks like the sequence of

powers of a real number � (strictly greater than 1) and second a linear

recurrence whose characteristic polynomial is the minimal polynomial of

�, then it is sparse and we will point out why it may fail to be sparse if

it does not satisfy a linear recurrence. Now, let us discuss a di�erence

between sparse and non sparse sequences.

Recall that a Pisot number is a real algebraic number strictly greater

than 1 whose algebraic conjugates are of modulus strictly smaller than 1. If

the sequence R satis�es the A. Bertrand conditions and a linear recurrence

whose associated polynomial is the minimal polynomial of a Pisot number,

then the theory of hN;+; VR i is decidable (see [10] and in [9, Theorem 2]).

Is it true that for all e�ectively sparse sequences R such that the theory of

hN;+; Ri is decidable, we have that the theory of hN;+; VR i is decidable?

If L(R) contains all �nite words of the form 10n110n210n3 : : : with ni > n,

for some �xed natural number n(�), then ThhN;+; VR ; fRi is undecidable
(see [7] and Proposition 8). A corollary of this undecidability result is the

undecidability of ThhN;+; V(n+2n )i, which contrasts with the decidability

of ThhN;+; V(2n )i (see [5], [10] and [3]). (Unlike the above results the

decidability proof of this theory uses automata theory and its quanti�er

complexity is still unknown.) Note that if the sequence R satis�es the

A. Bertrand conditions, then L(R) has the above property (�).
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Finally, we will examine the theory of hN; <;R; Si which has also been

considered by A.L. Semenov (see [12, Theorem 2]). Here, again by model

theoretic means, we will obtain that, under certain conditions over R, this

theory is existential.

2. hN ;+; Ri

First, let us set up some notations. We will work in the following language:

L = f+; .�; <; 0; 1; �=n;n 2 ! � f0g; �R; S; S�1g, where
x .� y = 0 if x 6 y,

= x� y otherwise,

x=n = y i�
n�1W
k=0

x = n:y + k, where n:y = y+ � � �+| {z }
n times

y

�R(x) = rn i� rn 6 x < rn+1 and �R(0) = 0,

S(x) = x i� rn < x < rn+1; S(0) = 0, and

S(rn) = rn+1, n > 0, and S�1(rn) = rn�1, n > 0,

S�1(1) = 1.

In our proof, we will use the following two well known results of Presburger

(see for instance [8, x3.2 Theorems 32A and 32E]):

(a) ThhN;+; .�; <; 0; 1; :=n;n 2 Ni is decidable and admits quanti�er elim-

ination in LP = f+; .�; <; 0; 1; :=n;n 2 Ng.

(b) ThhR;<; 1; Si admits quanti�er elimination and

so does ThhR;<; 1; S; S�1i
where S�1(x) = y i� (x = 1 ^ y = 1) _ (x > 1 ^ Sy = x).

Let Td be a universal axiomatisation of this theory.

First, let us recall the notion of a sparse predicate. We need the notion of

an operator A on R, it is any expression of the form anS
ny+ � � �+a0S0y,

where R(y) and ai 2 Z, 0 6 i 6 n. The predicate R is sparse if for any

operator A on R, the following holds:

(a) either A = 0 for all y in R, or A >pp 0, or A <pp 0, where A >pp 0

(respectively A <pp 0) means that for all but �nitely many y in R,

A(y) > 0 (respectively A(y) < 0).
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(b) If A >pp 0, then there exists a natural number � such that for all y

in R, A(S�y)� y > 0.

By an abuse of notation, we will consider \terms" of the formP
i>0

mi � S�i(x)=ni, where ni 2 N � f0g, mi 2 Z, m0 6= 0.

We will interpret x+ (�1) � y by x .� y if x > y and by 0, otherwise.

We have
X
i>0

mi � S�i(x)=ni =
X
i>0

�
mi

ni
� S�i(x)� qi � mi

ni

�
,

where 0 6 qi < ni, S
�i(x) � qi (mod ni) and

mi

ni
is the quotient of mi

by ni. We will write down a set T of axioms which amount to put the pair

of conditions above on operators A except that we will replace \A = 0"

by \A =pp 0". We will call a sequence satisfying those conditions almost

sparse. We will show that T admits quanti�er elimination in the language

L and in case T is e�ective, T will be decidable.

Let T be the following set of axioms:

(A1) TP , a set of universal axioms in the language f+; .�; <; 0; 1g for the
theory of abelian, discretely ordered, simpli�able semi-groups with

neutral element 0 and 1 as the least element strictly greater than 0,

plus the following set of axioms:

for each n, n 2 ! � f0g;8x8y
�
x=n = y ,

n�1_
k=0

x = n � y + k
�
:

Let us abbreviate the atomic formulas �R(x) = x by R(x),

x = n � (x=n) by x � 0 (mod n) and
Y
j

nj � t T
X
i>0

�Y
j 6=i

nj

�
mi � ti by

t T
X
i>0

mi

ni
� ti.

(A2) R(1) ^ 8x((x > 1 ^ R(x))! (x < S(x) ^ 8y((y > x ^ R(y))!
y > S(x))) ^ R(S(x))).

(A3) 8x[S�1(S(x)) = x ^ ((x = 1 ^ S�1(1) = 1) _ ((x > 1 ^ R(x))!
(S�1(x) < x ^ S(S�1(x)) = x)))].

(A4) 8x((�R(0) = 0 ^ S(0) = 0 ^ S�1(0) = 0)^
(x > 1! (�R(x) 6 x < S(�R(x)) ^ �R(�R(x)) = �R(x)^
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8y(�R(x) < y < S(�R(x)) !
(�R(y) = �R(x) ^ S(y) = y ^ S�1(y) = y))))).

(A5) For each natural number n 6= 0, we add the following axiom scheme

in order to ensure that the sequence R is periodic, modulo n.

For some constant k(n), 8x8y(x > k(n) ^ y > k(n)^R(x) ^R(y) !
(
V
z2E

Szx � `z(mod n)! V
z2E

Sm+z(y) � `z(modn))) where S0(x) =

x, E varies over �nite subsets of integers and m is a positive integer

that might depend on n and E.

(A6) Let ni 2 N � f0g, mi 2 Z, m0 6= 0, and suppose
X
i>0

mi

ni
� S�i(x) > 0

for x > k(m;n), where m and n stand respectively for the �nite

sequences (mi), (ni) then there exists t 2 N, such that:

(i) 8x(x > k(m;n) ^ R(x)!
(St�1(x) 6

P
i>0

mi

ni
� S�i(x) < St(x)^

St�1(x) 6
P
i>0

mi � S�i(x)=ni < St(x)) _
(
P
i>0

mi

ni
� S�i(x) = St�1(x) ^ P

i>0

mi

ni
� di > 0^

S�i(x) � di (mod ni) ^
St�2(x) 6

P
i>0

mi � S�i(x)=ni < St�1(x)) _
(
P
i>0

mi

ni
� di 6 0 ^ S�i(x) � di(modni)^

St�1(x) 6
P
i>0

mi � S�i(x)=ni < St(x))).

Moreover,

(ii) 8x((x > k(m;n) ^R(x) ^ St�1(x) = P
i>0

mi

ni
� S�i(x))!

(8y(y > k(m;n) ^ R(y) ^ St�1(y) = P
i>0

mi

ni
� S�i(y)))).

(iii) there exists j0 such that for all j > j0, and there exists k0 > k

such that

(iiia)8x(x > k0(m;n) ^R(x)!
St�1(x) 6

P
i>0

mi � S�i(x)=ni + S�j(x) < St(x)).
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(iiib) (8x((x > k0(m;n) ^ R(x) ^ St�1(x) < P
i>0

mi

ni
� S�i(x))!

St�1(x) <
P
i>0

mi � S�i(x)=ni � S�j(x) < St(x))) ^
(8x((x > k0(m;n) ^ R(x) ^ St�1(x) = P

i>0

mi

ni
� S�i(x)) !

St�2(x) 6
P
i>0

mi � S�i(x)=ni � S�j(x) < St�1(x))).

First, we will show that T is model-complete. This will follow from the

three following Lemmas.

Lemma 1. LetM be a model of T . Then, for each a, b, c inM, and each

pair of non zero distinct natural numbers n, m, we have:

(a=n)=m = a=(n �m) and a=n = (a �m)=(m � n), if
a > b, a=n .� b=n = (a .� b)=n if a� a=n � n > b� b=n � n,

= (a .� b)=n+ 1, otherwise,

a=n+ b=n = (a+ b)=n� 1 if (a� a=n � n)+(b� b=n � n)> n,

= (a+ b)=n, otherwise,

suppose b > m, b � k (modm), 0 6 k < m,

if a+ n � b=m = c, then b = (mc .� ma)=n+ k and

if a .� n � b=m = c, then b = (ma .� mc)=n+ k.

Let A;B be models of T with A � B and let b belong to R(B)�A.
Set A� = fa 2 A : a < bg, A+ = fa 2 A : b < ag.

Lemma 2. For all z 2 Z� f0g, A� < Szb < A+.

Proof. | By the way of contradiction, suppose that there exists a in A
such that b < a < S(b), since A is closed under �R, we have b < �R(a) 6
a < S(b) which contradicts axiom (A4).

In the same way, we have that if S�1(b) < a < b, for some a in A, then
S�1(b) < �R(a) < b. 2

Lemma 3. Let ni 2 N�f0g, mi 2 Z�f0g and suppose
X
i>0

mi

ni
�S�i(b) > 0

and S�i(b) � di(modni).
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First, let a 2 A+, then:

�R(a+
X
i>0

mi � S�i(b)=ni) = �R(a); if S(�R(a))� a 2 A+;

= S(�R(a))if S(�R(a))� a 2 A�
�R(a�

X
i>0

mi � S�i(b)=ni) = �R(a); if a� �R(a) 2 A+;

= S�1(�R(a))if a� �R(a) 2 A�:

Second, suppose that a 2 A�.

Either St�1(b) <
X
i>0

mi

ni
� S�i(b) < St(b), then

�R(a+
P
i>0

mi � S�i(b)=ni) = �R(
P
i>0

mi � S�i(b)=ni � a) = St�1(b),

Or St�1(b) =
X
i>0

mi

ni
� S�i(b), then

if
X
i>0

mi

ni
� di > 0, then �R(

P
i>0

mi � S�i(b)=ni � a) = St�2(b),

�R(
P
i>0

mi �S�i(b)=ni+ a) = St�2(b) if in addition a <
X
i>0

mi

ni
� di,

= St�1(b) if in addition a >
X
i>0

mi

ni
� di,

if
X
i>0

mi

ni
� di < 0, then :

�R(
P
i>0

mi � S�i(b)=ni + a) = St�1(b),

�R(
P
i>0

mi � S�i(b)=ni � a) = St�1(b) if in addition a > �
X
i>0

mi

ni
� di,

= St�2(b) if in addition a < �
X
i>0

mi

ni
� di.

Proof. | First note that axiom (A6) implies that �R(
P
i>0

mi�S�i(b)=ni) =
St(b) for some integer t. So, by Lemma 2, A� <

P
i>0

mi �S�i(b)=ni < A+.
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(a) Let a 2 A+ and

suppose that S(�R(a))�a2A+, then
P
i>0

mi �S�i(b)=ni<S(�R(a))�a
and so �R(a)6 a< a+

P
i>0

mi �S�i(b)=ni < S(�R(a)),

suppose that S(�R(a))�a2 A�, then S(�R(a))�a<
P
i>0

mi �S�i(b)=ni
and so S(�R(a)) <

P
i>0

mi � S�i(b)=ni + a.

We have that S�j0(S�R(a)) belongs to A+ and that, by axiom (A6),

S�j0(S�R(a)) + S(�R(a)) < S2(�R(a)),

so a+
P
i>0

mi � S�i(b)=ni < S(�R(a)) + S�j0(S�R(a)) < S2�R(a),

suppose that a� �R(a) 2 A+, then
P
i>0

mi � S�i(b)=ni < a� �R(a)

i.e. �R(a) < a� P
i>0

mi � S�i(b)=ni < a < S(�R(a)),

suppose that a� �R(a) 2 A�, then a� �R(a) <
P
i>0

mi � S�i(b)=ni,
i.e. a� P

i>0

mi � S�i(b)=ni < �R(a).

By axiom (A6), S�1�R(a) +
P
i>0

mi � S�i(b)=ni < a

(indeed
P
i>0

mi � S�i(b)=ni < S�j0�1(a)).

(b) Let a 2 A�.
First, assume that St�1(b) <

X
i>0

mi

ni
� Si(b). So by axiom (A6),

�R(
P
i>0

mi � S�i(b)=ni) = St�1(b), so Ss�1(b) 6 a+
P
i>0

mi � S�i(b)=ni.
We have that A� < S�j0(b) by Lemma 2.

By axiom (A6) (iiia), S�j0(b) +
P
i>0

mi � S�i(b)=ni < Si(b).

So, �R(a+
P
i>0

mi � S�i(b)=ni) = St�1(b). By a similar argument and

axiom (A6) (iiib), we have that �R(
P
i>0

mi � S�i(b)=ni � a) = St�1(b).

Second, assume that St�1(b) =
X
i>0

mi

ni
� S�i(b).

Then, as in axiom (A6) we have two subcases.
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First, suppose that
X
i>0

mi

ni
� di > 0.

Then, St�2(b) = �R(
P
i>0

mi �St�2(b)) = �R(
P
i>0

mi �S�i(b)=ni) and by

axiom (A6) (iiib) we have St�2(b) = �R(
P
i>0

mi � S�i(b)=ni � a).

If a <
X
i>0

mi

ni
� di, then St�2(b) = �R(

P
i>0

mi � S�i(b)=ni + a) and if

a >
X
i>0

mi

ni
� di, then Ss�1(b) 6

X
i>0

mi � S�i(b)=ni + a and by axiom

(A6) (iiia), and the same reasoning as before,
X
i>0

mi �S�i(b)=ni+a <

St(b).

Second, suppose that
X
i>0

mi

ni
� di < 0.

Then, St�1(b) = �R(
P
i>0

mi � S�i(b)=ni). So as before, using axiom

(A6) (iiia), St�1(b) = �R(
P
i>0

mi � S�i(b)=ni + a). If a 6 �P
i>0

mi

ni
� di,

then St�1(b) = �R(
P
i>0

mi � S�i(b)=ni � a) and if a > �
X
i>0

mi

ni
� di,

then
P
i>0

mi � S�i(b)=ni � a < Ss�1(b) and by axiom (A6) (iiib)

St�2(b) 6
P
i>0

mi � S�i(b)=ni � a. 2

Corollary 4.

(a) Let a belong to A+, then S(a� b=n �m) = a� b=n �m if a� b=n �m
does not belong to R i.e. if �R(a � b=n �m) 6= a + b=n �m which

is always the case if m 6= 0.

(b) Let a belong to A�, then unless a+ b=n �m = S�t(b), S(a+ b=n �
m) = a+ b=n �m and unless b=n �m�a = S�t(b), S(b=n �m�a) =
b=n �m� a.

(c) Let A� < c < A+ suppose c does not belong to R, then c=n �m
does not belong to R.
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Proof:

(a) �R(a� b=n �m) is either equal to �R(a) or S(�R(a)) or S
�1(�R(a)).

(c) By axiom (A6), �R(c=n �m) = St(c) for some c, but since c does not

belong to R, S(c) = c. 2

Proposition 5. T is model-complete.

Proof. | Using Robinson criterium, it suÆces to show that given A,
B two models of T with A � B, then A �ec B. Since T is universal, it

suÆces to consider the extensions B of the form hA; bi with b 2 B �A.
We show that A �ec B in the following two cases:

(a) RhA; bi = RhAi,
(b) R(b).

Using Lemmas 2 and 3, one can show that this suÆces to ensure that, in

all cases, A �ec B. Indeed, suppose b does not belong to R, �rst consider

terms of the form t = a� b=n �m, with a 2 A and m;n 2 N � f0g (note
that S(b=n �m) = b (see Corollary 4)). Either t belongs to R and so we

are back to case (b) since by Lemma 1, hA; ti = hA; bi or for some a0 in A,
n0;m0; �R(a

0 � t=n0 �m0) does not belong to A, but t does not belong to

R. By Lemma 1, hA; a0 � t=n0 �m0i = hA; ti = hA; bi. So, we may as well

assume that �R(t) =2 A and t =2 R. Set t1 = �R(t) and consider hA; t1i. By
Lemma 2, the Sz(t1), z 2 Z, are all in the same cut and �R(a� t1=n �m)

only depends on the cut t1 is in and where a is with respect to this cut.

But �R(a+ t1=n �m) 6 a+ t1=n �m < a+ t=n �m < a+S(t1)=n �m, and if

a > t1, �R(a�S(t1)=n �m) 6 a�S(t1)=n �m < a� t=n �m < a� t1=n �m,

so �R(a� t=n �m) either belongs to A or it is equal to Sz(t1) for a certain

z and similarly for �R(a� t=n �m+
P

i
mi �Si(t1)=ni) (see Lemma 3). So

we see that RhA; t1; ti = RhA; t1i and replacing A by hA; t1i, we are in

case (a).

(a) Since TP is model-complete, by the existential Frayne theorem, there

exists an embedding f of hA; bi in an ultrapower of A which is the

identity on A and respects LP (see [6, 4.3.13]). Let us show that f

is an L-morphism. Let t(a; b) be an L-term where b is occuring and

let a 2 A. By hypothesis, �R(t(a; b)) belongs to A. We have by
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axiom (A4), �R(t(a; b)) 6 t(a; b) < S(�R(t(a; b))), since f respects the

order we have f(�R(t(a; b))) 6 f(t(a; b)) < f(S(�R(t(a; b)))), since f

is the identity on A, we have �R(t(a; b)) 6 f(t(a; b)) < S(�R(t(a; b))).

So, by axiom (A4), �R(f(t(a; b))) = �R(t(a; b)). Consider S(t(a; b)),

suppose that �R(t(a; b)) 6= t(a; b) so �R(t(a; b)) = f(�R(t(a; b))) 6=
f(t(a; b)), by de�nition of S, S(t(a; b)) = t(a; b). So f(S(t(a; b))) =

f(t(a; b)) = S(f(t(a; b))). If �R(t(a; b)) = t(a; b), t(a; b) belongs to A,
and so f(S(t(a; b))) = S(t(a; b)) = S(f(t(a; b))).

(b) Since Td is model-complete, by the existential Frayne theorem, there

exists an embedding g of R(hA; bi) in an ultrapower R(A)�=U , where
U is a �-regular ultra�lter on �, and � = maxfjLj; jBjg, which is the

identity on R(A) and respects f1; <; S; S�1g (see [6, Corollary 4.3.13]).
Using the embedding g, we de�ne an image b? of b in A�=U and then

we will de�ne an embedding of hA; bi sending b to b?, Sz(b) to Sz(b?),

z 2 Z� f0g, and which restriction to A will be the identity. The element

b? will be the realization of the following type p(x) = fSzx � `jz (mod m),

R(A�) < x < R(A+) : S
zb � `jz (mod m), m is a natural number, `jz 2

f0; : : : ;m � 1g, z 2 Z� f0gg, where A� = fa 2 A : a < bg and A+ =

fa 2 A : b < ag. By axiom (A5), this type is �nitely satis�able by an

element of the form Sn(g(b)), for some n, which is in the same cut as b

with respect to A (see Lemma 2). Moreover, since g is a morphism for S

and S�1, we have that Sn�1(g(b)) = Sn(g(S�1(b))).

If n = m, then b=n:n = b � k, for some 0 6 k < n and since b and b?

satis�es the same congruences, we have b?=n:n = b? � k with the same

k. From Lemma 3, we see that we may de�ne (�imi:S
i(b)=ni � a)? as

�imi:S
i(b?)=ni � a, moreover, since for any z, Sz(b) and Sz(b?) satisfy

the same congruences, if we apply the function �R to it, we obtain a term

of the same form where b is possibly replaced by St(b). The fact that

�imi:S
i(b)=ni � a = St

0

(b) for some t0 is enforced by axiom (A6) and the

fact that b > A�. Since b? is also strictly greater than A�, we will also
have that �imi:S

i(b?)=ni � a = St
0

(b?). 2

Proposition 6. Suppose that N satis�es T , then T axiomatizes Th(N ),

T is complete, admits quanti�er elimination and is decidable if T is

recursive.

Proof. | Note that T is a universal set of axioms such that N embeds
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in any model of T . We have shown that T is model-complete. This entails

that N is a prime model for T , that T is complete and axiomatises N and

�nally that T admits quanti�er elimination. The theory Th(N ) will be

decidable if T is recursive. 2

Corollary 7. The de�nable functions are given by �nitely many L-terms.

Proof. | This follows directly, using compactness, from the fact that

T is universal and admits quanti�er elimination. 2

Let us recall the A. Bertrand conditions on a sequence R (see [2]). A.

Bertrand has caracterized the sets L(R) (see Introduction) stable by

(B1) left translations i.e. if xnxn�1 : : : xh 2 L(R)
then xnxn�1 : : : xh0 : : : 0 2 L(R) and

(B2) left truncations i.e. if xnxn�1 : : : xh 2 L(R)
then for m < n, xmxm�1 : : : xh 2 L(R).

It is shown that those conditions imply the existence of a real number

� > 1, such that L(R) = L(�), where L(�) is the language associated with

the �-shift and such that lim
�
rk

�k

�
is a non zero real number and so L(R)

consists of �nite words written in a �nite alphabet (indeed lim rn+1=rn
is equal to �). Note that if in addition the �-expansion of 1 is almost

periodic, then L(�)(= L(R)) is rational which implies that the sequence

R satis�es a linear recurrence (see [14]).

Proposition 8. Let R be a sequence such that L(R) contains all �nite

words of the form 10n110n210n3 : : : with ni > n, for some �xed natural

number n (?). Then, ThhN;+; VR ; fRi is undecidable. If R satis�es

the A. Bertrand conditions, then R has this property (?).

Proof. | The proof of the undecidability of Th(N;+; VR ; fR) is along

the same lines that the one for Th(N;+; V2 ; n ! 2n) with the di�erence

that in this case not all sequences of 0's and 1's belong to L(R). For x

belonging to R, one interprets x belongs to y as \1" in the x position

belongs to the normal representation of y in base R and then for x any

natural number, x belongs to y i� fR(x) belongs to y. Then one may

de�ne the set of multiples of x 6 z as the smallest set v of natural numbers

containing 0 and closed by the following relation: if u < z and if u belongs
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to v, then u+ x belongs to to v. Then, if x > n, x divides y, denoted by

\x j y", i� y belongs to the set of mutiples of x less or equal to y.

Suppose that R is a sequence satisfying the A. Bertrand conditions. As in

proof of Proposition 15 in [4], we use the criterium of Parry for a sequence

w to belong to L(�) (see [11]). Let e(1) be the �-expansion of 1. Then

e(1) begins with a letter e strictly greater than 0 and does not end with

an in�nite sequence of 0's (see [4, section 2.2]). Let e(1) = e0n�1e0 : : : ;

with e; e0 6= 0, n > 1. Then all sequences of the form 10n110n210n3 : : : ;

with ni > n, i > 0, belongs to L(R). 2

Corollary 9. ThhN;+; V(n+2n )i is undecidable.

Proof. | In order to apply the preceeding Proposition, we directly

check that L(R) contains all �nite words of the form 10n110n210n3 : : :

with ni > n. (We could have checked the A. Bertrand conditions). We

will show that this is the case for n = 2. It suÆces to check that 2n+n <

2n+n+2n�2+n�2+ : : :+23+3 < 2n+1+n+1. We have 2n+1+n+1 =

2:2n+n+1, so we have to verify that 2n�2+n�2+ � � �+23+3 < 2n+1.

By induction on n, we suppose that 2n�4+n�4+ � � �+23+3 < 2n�2+1.

Write 2n = 4:2n�2, we have n� 2 < 2n�2 and so get the result. 2

Now, we will address the question: for which sequence R, does N satisfy

T ? First, we will assume that in addition our sequence R satis�es one of

the hypotheses:

(A) either, there exists � > 1 such that lim
k!1

rk

�k
= � , where � 2 R+ �f0g,

(B) or, lim
t!1

rk

rk�1
=1.

As we have seen above, the hypothesis on our sequence that asymptotically

it looks like a sequence of powers of � is implied by the A. Bertrand

conditions on R. Moreover, if the sequence R satis�es a linear recurrence,

then axiom (A5) holds in the corresponding theory T . Either, we will

require that the sequence R is such that L(R) satis�es the A. Bertrand

conditions (A) and (B) and that R satis�es a linear recurrence whose

characteristic polynomial is the minimal polynomial of �, let us call these

hypotheses (A)?, or we will assume hypothesis (B). (For a discussion of

hypothesis (A)?, see [4] after Theorems 2 and 5). Note that if the sequence



98 F. PO INT

R satis�es (A)? and if in addition � is a Pisot number, then decidability of

Th(N ) can be proved by automata theory (see [10] and [9, Theorem 2]).

Examples of Sparse Sequences (see [12])

(a) R = Fibonaci sequence i.e. rn = rn�1 + rn�2, r0 = 1 et r1 = 1 and

the corresponding � = (1 +
p
5)=2.

(b) R = (2n).

(c) R = (n!).

Example of a Non Sparse Sequence

Let R = (2n + n). In this case, one may de�ne the function n 7! 2n

as follows. Let (n;m) belong to N2 . Then (n;m) = (n; 2n) i� there

exists r in R such that (n = 2r � Sr + 1 and m = Sr � r � 1). The

theory (N;+; n 7! 2n) has been proved to be decidable and it admits

quanti�er elimination in f+;�; <; 0; 1; 2x; `(x); �2(x); Dn;n 2 N � f0gg
where 2`(x) = �2(x) and `(2x) = `(x) + 1 (see [13, Theorem 2] and [7]).

One can check directly that axiom (A5) is satis�ed. But axiom (A6) (iii)

does not hold (see Lemma 11 below).

Set x = 2k+k and t(x) = 2x�S(x)+1 = k. Then t(Snx) = t(x)+n. We

have x < y i� t(x) < t(y). But the only way to insure that ifA� < b < A+,

then t(b) does not belong to A is to require that if t(x) < u < t(y), then

there exists z in R with x < z < y ^ u = t(z).

Now, in case of hypothesis (B) i.e. if lim
k!1

rk

rk�1
= 1, we will rewrite

axiom (A6) of the theory T in a more explicit way. Let hypothesis (B)?

be hypothesis (B) plus the fact that R satis�es axiom (A5).

First, we note that

i6NX
i>0

mi

ni
� S�i(x) > 0 for x large enough, i� m0 > 0.

This implies, in particular, that if

i6NX
i>0

mi

ni
�S�i(x) = 0 for x large enough,
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then all mi = 0. Moreover,

i6NX
i>0

mi

ni
� S�i(x) > 0 for x large enough,

implies that

i6NX
i>0

mi

ni
� S�i(x) >

X
i>0

jmij, for x large enough and so that

i6NX
i>0

mi � S�i(x)=ni > 0.(?)

Proof. | Take k large enough such that �rst rk >
2:n0

jm0j �
X
i>0

jmij and

then such that
rk�N

rk�N+1

< min

8><
>:
jm0j
2:n0

�
0
@X

i>0

����mi

ni

����
1
A
�1

; 1

9>=
>;.

If m0 > 0, then

i6NX
i>1

mi

ni
� rk�i > m0

n0
� rk.

On the other hand, if m0 > 0 and

i6NX
i>0

mi � rk�i=ni > 0, we get a contra-

diction. Indeed,

i6NX
i>1

mi=ni � rk�i
rk

>
m0

n0
which is a contradiction.

Now let us assume that

i6NX
i>0

mi � rk�i=ni > 0, for k large enough. So

by the above m0 > 0. We have
m0

n0
rk + rk

0
@i6NX

i>1

mi

ni
� rk�i
rk

1
A > 0. By

hypothesis on rk and the quotients
rk�N

rk�N+1

, we get the result. The last

assertion follows from: let rk�i � di (mod ni) with 0 6 di < ni, then
i6NX
i>0

mi � S�i(x)=ni =
i6NX
i>0

mi

ni
� S�i(x)�

i6NX
i>0

mi

ni
� di.
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Axiom (A6)

Let ni 2 N � f0g, mi 2 Z, m0 6= 0, and supposeX
i>0

mi

no
�S�i(x) > 0 for x > k(m;n). In this case this implies thatm0 > 0.

(i) Suppose that
m0

n0
> 1 then there is k(m;n) = k 2 N,

8x(x > k(m;n) ^ R(x)! x 6
X
i>0

mi � S�i(x)=ni < S(x)):

Set t = 0.

Suppose that m0=n0 < 1 then there k(m;n) = k 2 N,
8x(x > k(m;n) ^ R(x)! S�1(x) 6

X
i>0

mi � S�i(x)=ni < x):

Set t = �1.
(ii) There exists k0(n;m) > k(n;m), with k(n;m) as above such that:

8x(x > k0(n;m) ^R(x)! S�t(x) < S�1(x) +
X
i>0

mi � S�i(x)=ni

< S�t+1(x)):

(iii)There exists k0(n;m) > k(n;m), with k(n;m) as above such that:

8x(x > k0(n;m) ^R(x)! S�t(x) <
X
i>0

mi � S�i(x)=ni � S�1(x)

< S�t+1(x))):

Now, let us show that this axiom (A6) holds under the hypothesis that

lim
n!1

rn=rn�1 = 1. Let x belong to R and suppose that x � q(mod n0)

with 0 6 q < n0,

Now, suppose that
m0

n0
> 1.

We want to show that

x 6 m0 � x=n0 +
X
i>1

mi � S�i(x)=ni (1)
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and

m0 � x=n0 +
X
i>1

mi � S�i(x)=ni < S(x): (2)

(1) is equivalent to 0 6 m0 � x=n0 � x+
P
i>1

mi � S�i(x)=ni or equivalently
that 0 6 (m0 � n0) � x=n0 � q +

P
i>1

mi � S�i(x)=ni. This follows from (?).

(2) is equivalent to 0 6 S(x)�m0 � x=n0 �
P
i>1

mi � S�i(x)=ni which holds

by (?).

Suppose that
m0

n0
= 1. First suppose that

X
i>1

mi

ni
�S�i(x) > 0. (Note that

this condition is equivalent to mi0
> 0, where i0 is the smallest i such that

mi 6= 0).

We want to show that

x 6 m0 � x=n0 +
X
i>1

mi � S�i(x)=ni (3)

and

m0 � x=n0 +
X
i>1

mi � S�i(x)=ni < S(x): (4)

(3) is equivalent to 0 6 m0 � x=n0 � x+
P
i>1

mi � S�i(x)=ni or equivalently
that 0 6 q +

P
i>1

mi � S�i(x)=ni. This follows from (?).

(4) is equivalent to 0 6 S(x)�m0 � x=n0 �
P
i>1

mi � S�i(x)=ni which holds

by (?).

Second suppose that
X
i>1

mi

ni
� S�i(x) < 0.

We want to show that

S�1(x) 6 m0 � x=n0 +
X
i>1

mi � S�i(x)=ni (5)



102 F. PO INT

and

m0 � x=n0 +
X
i>1

mi � S�i(x)=ni < x: (6)

(5) is equivalent to 0 6 m0 � x=n0 � S�1(x) +
P
i>1

mi � S�i(x)=ni which
holds by (?).

(6) is equivalent to 0 6 x�m0 � x=n0 �
P
i>1

mi � S�i(x)=ni or equivalently
that 0 6 q � P

i>1

mi � S�i(x)=ni. This follows from (?).

Suppose that
m0

n0
< 1.

We want to show that

S�1(x) 6 m0 � x=n0 +
X
i>1

mi � S�i(x)=ni (7)

and

m0 � x=n0 +
X
i>1

mi � S�i(x)=ni < x: (8)

(7) is equivalent to 0 6 m0 � x=n0 � S�1(x) +
P
i>1

mi � S�i(x)=ni which
holds by (?).

(8) is equivalent to 0 6 x�m0 � x=n0 �
P
i>1

mi � S�i(x)=ni or equivalently
that 0 6 (n0�m0) �x=n0� q�

P
i>1

mi �S�i(x)=ni where 0 6 q < n0. This

follows from (?).

One can show similarly that (i) and (iii) hold since in the discussion above

we only use the value of the coeÆcient of the term in x.

Now we will examine in case of hypothesis (A) i.e. in case there exists

� > 1 such that lim
k!1

rk

�k
= � , where � 2 R+ � f0g, the meaning of

axiom (A6). We will examine terms of the form
P
i>0

mi � rk�i=ni. We

have rk�i=ni = rk�i � 1

ni
� di

ni
, with 0 6 di < ni. Set qi =

mi

ni
and let
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u =
P
i>0

qi � ��i, u =
P
i>0

jqij � ��i. The �rst part of axiom (A6) requires

that if (9) and (10) below hold for k0 large enough, then it holds for all

k > k0.

rk�s�1 6
X
i>0

mi � rk�i=ni (9)

and X
i

mi � rk�i=ni < rk�s: (10)

Then if (9) and (10) hold and look for j such that the following holds:

(where t may be replaced by t� 1 in case
X
i>0

mi

ni
� S�i(x) = St�1(x)).

rk�t�1 6
X
i>0

mi � rk�i=ni + q � rk�j (11)

and X
i

mi � rk�i=ni + q � rk�j < rk�t; with q > 0. (12)

rk�t�1 6
X
i>0

mi � rk�i=ni � q � rk�j (13)

and X
i>0

mi � rk�i=ni � q � rk�j < rk�t;with q > 0. (14)

Note that in anycase, (9) implies (11) and that (10) implies (14).

Let � = ��k � P
i>0

jqij � di � �t and note that � = 0 i� rk�i � 0 (mod ni), for

all i.

(9) is implied by: ��1 � (� + �) 6 (u � � � u � �) � �t � � which is equivalent

to � � (��1 + u � �t) 6 � � (u � �t � ��1)� �.

(10) is implied by: (� � u+ � � u) � �t + � < (� � �), which is equivalent to

� � (u � �t + 1) < � � (1� u � �t)� �.
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We are able to satisfy those two inequalities whenever t has been chosen

such that 1 > u � �t > ��1 or equivalently that u � �t < 1 < u � �t+1.
Choose t minimal in absolute value such that 1 6 u ��t+1 and so u ��t < 1.

Now, for k large enough (10) will hold. Indeed, �rst choose k0 such that

� < 1=2 � �(1�u�t), then choose � < 1=2 � �(1�u�t)=(u ��s+1) and �nally

choose k1 > k0 such that for all k > k1, � � � < rk=�
k < � + �.

Since s is such that u � �t < 1 6 u � �t+1, there exists j large enough such

that: (u+ q � ��j) � �t < 1 6 u � �t+1 < (u+ q � ��j) � �t+1 and so (11) and

(12) also hold whenever (9) and (10) hold.

If t is such that u � �t < 1 < u � �t+1, then there exists j large enough

such that: 1 < (u� q � ��j) � �t+1 and so (u � q � ��j) � �t < u � �t < 1 <

(u� q � ��j) � �t+1 < u � �t+1 and so (13) will hold whenever (9) and (10)

hold.

So we see that for inequalities (9) and (13), we have to distinguish the

cases whether there is a t such that u � �t < 1 < u � �t+1, or u = ��(t+1).

(a) There is a t such that u � �t < 1 < u � �t+1. So if k0 has been chosen

such that � = ��k0 � P
i>0

jqij � di � �t < 1=2� � (u � �t � ��1) and k1 > k0

such that for all k > k1, � � � < rk=�
k < � + � with � 6 1=2 � � � (u �

�t � ��1)=(��1 + u � �t), then (9) will hold for all k > k1 and also, by

the discussion above, (13) for k and j large enough.

(b) There is t such that u = ��t�1.

First assume that the sequence
�
rk

�k

�
is constant for k large enough. So

for such k, (9) is equivalent to: ��1 � � 6 �t0(u � � � ��k � P
i>0

di � qi) i.e.
0 6 ���k � P

i>0

di � qi. So we have to take into account the congruences

that each rk�i satis�es modulo ni.

If
X
i>0

di

ni
�mi 6 0, then (9) holds. If

X
i>0

di

ni
�mi > 0 then we have

rk�t�2 6
X
i>0

mi � rk�i=ni < rk�t�1;

for k large enough such that the sequence is constant and � 6 �(��1)���2.
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Second, assume that in addition the sequence satis�es a linear recurrence

whose characteristic polynomial is the minimal polynomial of �. ThenP
i>0

qi � ��i = ��t�1(= u) implies that
P
i>0

qi � ��i+n = �n�t�1 with n >

maxfi; t+ 1g and so
P
i>0

qi � rk�i = rk�t�1, for k large enough.

Therefore, if
X
i>0

di

ni
�mi 6 0, then (9) holds since

X
i>0

mi � rk�i=ni =
X
i>0

mi

ni
� rk�i �

X
i>0

mi � di
ni

= rk�t�1 �
X
i>0

mi � di
ni
:

If
X
i>0

di

ni
� mi > 0, then we will show that rk�t�2 6

P
i>0

mi � rk�i=ni <

rk�t�1. The right inequality is clearly satis�ed, for the left one, we choose

k large enough such that ��� < rk=�
k < �+� with � < 1=2�� �(��1)=(�+1)

and � � � < 1=2 � � � (� � 1)=(� + 1).

Let us examine conditions (13) in this case where u = ��t�1.

First suppose that
X
i>0

di

ni
�mi = 0. Let a > 0, then we put a condition on

a in order to get that rk�t�1 � a =
X
i>0

mi

ni
� rk�i � a > rk�(t+2). Dividing

both sides of the inequality by �k�(t+1), we get ��1 � rk�(t+2)=�k�(t+2) <
(rk�(t+1)�a)=�k�(t+1). This is implied by ��1�(�+�) < (���)�a=�k�(s+1)
i.e. a=�k�(t+1) < (� � �)� ��1 � (� + �).

Choose � = 1=2 � � � (� � 1)=(� + 1). Then we choose k0 such that for all

k > k0, � � � < rk=�
k < � + �. The condition on a is that a=�k�(t+1) <

1=2 � � � (1 � ��1). Now if a is in the form rk�j , then j has to be chosen

such that ��j+(t+1) < 1=4 � (1� ��1).

If
X
i>0

di

ni
�mi 6= 0, then

X
i>0

mi �rk�i=ni =
X
i>0

mi

ni
�rk�i�

X
i>0

mi � di
ni
. Then,

instead of considering a, consider a+
X
i>0

mi � di
ni
.
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If
X
i>0

mi � di
ni

> 0, then the discussion is as above, if
X
i>0

mi � di
ni

< 0, then

we have to consider the �nitely many cases where 0 < a 6
X
i>0

mi � di
ni
.

When the sequence does not satisfy a linear recurrence, then we will show

although conditions (9) up to (12) can be satis�ed if � is not a root of

unity, (13) may not be satis�ed as will show the example of the sequence

(2k + k).

Suppose that the sequence does not necessarily satisfy a linear recurrence.

Then we have to show that if rk�s�1 6
P
i>0

mi � rk�i=ni < rk�s, for k large

enough, then it holds for all k+ t, where t > 0. We have shown above that

the only case to consider is when u = ��s�1. We have two cases either

for all t > 0, rk+t�(s+1) 6
P
i>0

mi � rk+t�i=ni < rk+t�s, or there exists

t0 > 0 and s0 6= s such that rk+t0�(s0+1) 6
P
i>0

mi � rk+t0�i=ni < rk+t0�s0 .

We have seen that these inequalities hold if s0 has been chosen such that

u ��s0 < 1 < u ��s0+1, or u = ��(s
0+1). In this later case, we have �s

0

�s = 1,

which contradicts the hypothesis on � not being a root of unity. In the

former case where u � �s0 < 1 < u � �s0+1, we can meet conditions (9) up

to (14) as the above discussion shows, for k > k0 + t0. So now suppose

that for all k large enough, we have rk�s�1 6
P
i>0

mi �rk�i=rk�s. Then the

problem is that for a > t(rk), where t(rk) is a non constant term in rk, we

may have rk�s�2 6
P
i>0

mi � rk�i=ni � a < rk�s�1, but for 0 < a < t(rk),

rk�s�1 6
P
i>0

mi � rk�i=ni � a < rk�s.

So, we have shown the following Proposition.

Proposition 10. Let R be a sequence satisfying the A. Bertrand condi-

tions. Let � be a real number strictly greater than 1 such that L(R)

is equal to L(�). Suppose in addition that the �-development of 1

is almost periodic (so R satis�es a linear recurrence) and that the

minimal polynomial of � is the characteristic polynomial of this lin-

ear recurrence. Then R is an almost sparse sequence (and R satis�es

axiom (A6)).
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Lemma 11. The sequence (2k + k) is not sparse.

Proof. | Let rk = 2k + k, � = 2 and � = 1. Let qi = mi

ni
and

2k�i + k � i � di (mod ni). Suppose that
P
i>0

qi � 2�i = 2�s�1 for some

s and
P
i

qi � 1 > 0, (take for instance q2 = 2, and if i 6= 2, qi = 0, so

q2 � 2�2 = 2�1, s = 0 and q2 � 1 > 0).

Then, 2k�s�1+k�s�16 P
i>0

qi �(2k�i+k�i)�
P
i>0

qi�di < 2k�s is equivalent

to: 2k�s�1 + k � s� 1 6 2k
P
i>0

qi � 2�i +
P
i>0

qi � k�
P
i>0

qi � (i+ di) < 2k�s,

k � s � 1 6
P
i>0

qi � k �
P
i>0

qi � (i + di) < 2k�s�1, which holds for k large

enough i�
P
i>0

qi � (i+ di)� (s+ 1) 6 k(
P
i>0

qi � 1) i�
P
i

qi � 1 > 0.

If 1�P
i

qi = 0, then the requirement is that s+ 1 >
P
i

qi � (i+ di).

Suppose now that 1 �P
i

qi < 0, we are going to examine the condition

that if, for k > k0, 2
k�s�1 + k� s� 1 <

P
i>0

qi � (2k�i + k� i� di) < 2k�s,

then, for some j depending only on k0,

2k�s�1+k� s�1 <
P
i>0

qi � (2k�i+k� i�di)�2k�j �k+ j < 2k�s holds,

equivalently, 2k�s�1 + k � s� 1 6
2k
P
i>0

qi � 2�i � 2k � 2�j + (
P
i>0

qi) � k �
P
i>0

qi(di + i) + j < 2k�s. But, if

k is large enough, the inequality: 2k � 2�j + P
i>0

qi(i + di)� j � (s + 1) 6

k �
 P
i>0

qi � 1� q

!
never holds. Suppose, we replace 2k�j�k+j by some

a > 0. We get: 2k�s�1 + k � s � 1 6
P
i>0

qi � (2k�i + k � i � di) � a,

equivalently that a 6 (
P
i>0

qi� 1)k�P
i>0

qi(di + i)+ s+1. So the fact that

this inequality holds depends on the relative position of a and k. 2

Proposition 12. If the sequence R satis�es either hypotheses (A)� or (B)�

above, then N is a model of the corresponding theory T .
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Proof. | Let us �rst show that axiom (A5) is satis�ed if our sequence

satis�es a linear recurrence. Let us �x a natural number n. The numbers of

r-tuples (`1i ; : : : ; `ri) which are the values of an element of R in Z=q1Z�
� � � � Z=qrZ is �nite. By hypothesis, the value of the nth element of R

depends only on the k preceeding ones for a �xed k. So necessarily after a

sequence of length 6 kn
r

, we will have a repetition of a sequence of some

k consecutive r-tuples.

The fact that it satis�es axiom (A6) follows from Proposition 10. 2

Remark: To put necessary and suÆcient conditions on a sequence R in

order to get decidability of the structure hN;+; Ri seems to depend on

non trivial number theoretic results as the following results of Bateman,

Jockusch and Woods illustrate: ThhN;+;Pi, where P denotes the set

of prime numbers, is undecidable under the linear Schintzel hypothesis

(see Theorem 1 in [1]). Under the same hypothesis, they also prove that

ThhN;+; V2 ; (2n)n2Pi is decidable (see Corollary 1 in [1]).

3. hN ; <;Ri

We are going to consider the following expansion of Presburger arithmetic:

N = hN; <; 0; 1;�1; �R ; S; S�1i, where +1 denotes the successor function

on the natural numbers and �1 the predecessor function i.e. if n > 0,

then n � 1 is de�ned as the greatest natural number < n and we de�ne

0 � 1 as equal to 0. Since R is co�nal in N and since r0 = 1, for each

non zero natural number x, there exists n such that rn 6 x < rn+1, then

we de�ne �R(x) = rn, �R(0) = 0. If rn < x < rn+1, then S(x) = x,

also S(0) = 0, and S(rn) = rn+1, n > 0, and S�1(rn) = rn�1, n > 0,

S�1(1) = 1. If �R(x) = x, we will use the following abreviation R(x). Let

L be the following language f<; 0;�1; �R; S; S�1g.

The following structures, namely hN; <; 0;�1i and hR;<; 1; S; S�1i have
the same theory which admits quanti�er elimination. Let Td be a univer-

sal axiomatisation of this theory of discrete linear orders with a smallest

element, a successor and a predecessor functions (see [8, x 3.2]).
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We de�ne the following predicates In;m;n
0

;m
0(a; b) as follows:

9c(a < c < b ^ R(c) ^
^
i

Sni(c) = c�mi ^
^
j

Sn
0

j (c) 6= c�m0
j
);

where n; n0 (respectively m;m0) range over the �nite sequences of integers

(respectively natural numbers). In order to get an expansion N with an

existential theory, we are going to put a condition on the tuples (a; b) for

which either In;m;n0;m0 holds or does not hold (see axiom (A5) below).

This condition is justi�ed by the following Proposition.

Proposition 13. Suppose there exists a predicate In;m;n0;m0 = I such that

N satis�es :I(nk;mk) and I(mk; nk+1), k 2 N, nk < mk < nk+1 with

jmk � nkj increasing and jR \ [nkmk]j unbounded. Then the formula

'(u; v) = (u < v^:I(u; v)) is not equivalent in Th(N ) to an existential

formula.

Proof. | By the way of contradiction, suppose that '(u; v) is equivalent

to an existential formula  (u; v) = 9z1 : : : 9zm�(u; v; z1; : : : ; zm), where
�(u; v; z1; : : : ; zm) is a conjunction of basic formulas �(u; v; z1; : : : ; zm).

We assume that among those basic formulas there is \u < v". A term

t(x) is of the form : : : Sn2(�R(S
n1(�R(x + m1)) + m2)) : : : ; where mi

and ni belong to Z. We say that x is connected to y if � implies that

(x < y and t1(x) > t2(y)) or vice-versa with x in place of y, where t1,

t2 are terms. By hypothesis, we have '(nk;mk), let z1(k); : : : ; zm(k) el-

ements of N such that �(nk ;mk; z1(k); : : : ; zm(k)) holds. We claim that

because of the fact that nk < mk < nk+1 with jmk � nkj increasing and

jR \ [nkmk]j unbounded, no zi can be connected to both u and v. If zi is

connected to u, de�ne zi;new(k) = zi(k) and if zi is connected to v, de�ne

zi;new(k) by zi(k + 1). Now, we have that N satis�es  (nk;mk+1) since

we have �(nk;mk+1; z1;new(k); : : : ; zm;new(k)), which contradicts the fact

that I(mk; nk+1). 2

Example

LetR = (2n;n 2 N) [ (2k + 1; k 2 N),
I(a; b) = 9c(a < c < b ^ R(c) ^ S(c) = c+ 1) and

nk = 2k + 2, mk = 2k+1 � 1.



110 F. PO INT

Let T be the following theory:

(a) Td in f0;�1; <g.
(b) Td in f1; S�1; <g.
(c) 8x((�R(0) = 0 ^ S(0) = 0 ^ S�1(0) = 0) ^ (x > 1 ! ((�R(x) 6

x < S(�R(x)) ^ �R(�R(x)) = �R(x) ^ 8y(�R(x) < y < S(�R(x)) !
�R(y) = �R(x) ^ S(y) = y ^ S�1(y) = y)))).

(d)nR(rn).

(e) For each sequences n;m; n0;m0, and predicate I = In;m;n0;m0(�; �), there
exists n(I) andm(I) such that we have either the axiom: (8a8b ((n(I) <
a < b ^ :I(a; b))! (b 6 Sm(I)(�R(a)))), or

(8a8b ((n(I) < a < b)! :I(a; b))).

Proposition 14. T is model-complete.

Proof. | The proof of this Proposition follows the same pattern as

the proof of Proposition 5. Using Robinson criterium, it suÆces to show

that given A, B two models of T with A �L B, then A �ec B. Let

'(a1; : : : ; an) be an existential formula with parameters in A of the form

9b1 � � � 9bs�(a; b), where � is a quanti�er-free L-formula. The terms occur-

ing in � are of the form : : : Sz2(�R(bj +m1)) +m2)) : : : ; 1 6 j 6 s, where

bj 2 B�A, mi, zi 2 Z. We have two cases either every sub-term c1; : : : ; cr
which belongs to R, belongs to R(A) or there is at least one which does

not. Consider hA; c1; : : : ; cri with c1; : : : ; cr 2 B �A in the following two

cases:

(a) RhA; c1; : : : ; cri = RhAi,
(b)

V
i6s

R(ci) and cs+1; : : : ; cr do not belong to R.

(a) Since Td is universal, hA; c1; : : : ; cri satis�es Td and since it is model-

complete, by the existential Frayne theorem, there exists an embed-

ding f of hA; c1; : : : ; cri in an ultrapower of A which is the identity

on A and respects f0;�1; <g (see [6], Corollary 4.3.13). Let us show

that f is an L-morphism. Let t(a; c) be an L-term where at least one

of c1; : : : ; cr is occuring and let a 2 A. By hypothesis, �R(t(a; c))

belongs to A. We have that �R(t(a; c)) 6 t(a; c) < S(�R(t(a; c))).
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Since f respects the order, we have f(�R(t(a; c))) 6 f(t(a; c)) <

f(S(�R(t(a; c)))), since f is the identity on A, we have �R(t(a; c)) 6
f(t(a; c)) < S(�R(t(a; c))). So �R(f(t(a; c))) = �R(t(a; c)). Con-

sider S(t(a; c)), suppose that �R(t(a; c)) 6= t(a; c) so �R(t(a; c)) =

f(�R(t(a; c))) 6= f(t(a; c)), by de�nition of S, S(t(a; c)) = t(a; c).

So f(S(t(a; c))) = f(t(a; c)) = S(f(t(a; c))). If �R(t(a; c)) = t(a; c),

t(a; c) belongs to A, and so fS(t(a; c)) = S(t(a; c)) = S(f(t(a; c))).

Let t1; t2 belong to B. Suppose that In;m;n0;m0(t1; t2). This is equiva-

lent to In;m;n0;m0(�R(t1); �R(t2) + 1) with �R(t1), �R(t2) belonging to

A since there are no new elements of R in hA; c1; : : : ; cri.

(b) In this case, we will show that hA; c1; : : : ; csi embeds in an ultra-

power of A by an L-morphism and then we will use (a) to embed

hhA; c1; : : : ; csi; cs+1; : : : ; cri in an (iterated) ultrapower of A and so A
will satisfy '(a1; : : : ; an). Since Td is model-complete, by the existen-

tial Frayne theorem, there exists an embedding g of R(ha; c1; : : : ; csi)
in an ultrapower R(A)�=U , where U is a �-regular ultra�lter on �,

and � = jBj, which is the identity on R(A) and respects f1; <; S; S�1g
(see [6], Corollary 4.3.13).

For each c1; : : : ; cs 2 B�A, let Aci;�
= fa 2 A : a < cig, Aci;+ = fa 2 A :

ci < ag. As in Lemma 1, we get: for all z 2 Z�f0g,Aci;�
< Szci < Aci;+.

First, we have to identify which ci's determine the same cuts in A; by
renaming them, we may assume that c1 < c2 < � � � < cs and we also

assume that S�n
0

ci+1 is not in the same archimedean class as Snci. (If it

is not the case e.g. if S�n
0

ci+1 = Snci +m, then replace Sn
0

(Snci +m)).

We partition f1; : : : ; sg = J1 [ � � � [Jh according to the fact that i, i0 2 Jj
i� ci, ci0 belong to the same cut in A.

Now we are going to modify the images g(ci), 1 6 i 6 s, in A�=U in order

that it satis�es the same type as c1; : : : ; cs do over A. Let p(x1; : : : ; xm)

be the set of all formulas of the form
V
i;j

Sni;j (xj) = xj �mij 6= xj �m0
ij
,

where nij ; n
0

ij
2 Z, mij , m

0

ij
2 N � f0g, satis�ed by c1; : : : ; cs in B. We

want to show that this type is �nitely satis�able in A in order to get

a solution in A�=U . Consider a formula � in p(x1; : : : ; xm) of the formV
j

V
(i;t2Jj)

(Snit(xt) = xt � mit ^ Sn0it(xt) 6= xt � m0
it
) and set for t 2 Jj ,

Act;�
= AJj;�

and Act;+
= AJj;+

. Let Ij;t be the predicates corresponding
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to the formula � , 1 6 j 6 h, t 2 Jj . For each of those predicates, the the-

ory T contains the following axiom: (8a8b ((n(I) < a < b^ :Ij;t(a; b))!
(b < Sn(Ij;t)(�R(a)). For each j, 1 6 j 6 h, let (a`;j)i2I be a co�-

nal sequence in AJj;�
. We have that A satis�es Ij;t(a`;j ; S

n(Ij;t)(a`;j)).

Therefore in A, we have (at)t2Jj such that A satis�es �((at)t2Jj ) and

a`;j < an1 < � � � < anj < Sn(Ij;t)(a`;j) with Jj = fn1; : : : ; njg. So A�=U

satis�es �(([at;`]U )t2Jj ) with AJj;�
< (([at;`]U )t2Jj ) < AJj;+

. So the type

p(x1; : : : ; xm) is �nitely satis�able in A�=U by an element which lies in

the right cut with respect to A. 2

Corollary 15. T is complete and modulo T , any L-formula is equivalent

to an existential L-formula. Moreover if T is recursive, then T is

decidable.

Proof. | N is is a prime model of T and so T being model-complete,

T is complete. Since T is model-complete, any L-formula is equivalent

in T , to an existential L-formula. The last assertion follows from the

completeness of T . 2

Corollary 16. (See also [13]). Let R be a sequence such that

lim
n!1

rn+1�rn = +1, then ThhN; <;R; I
n;m;n0;m0

i, where n;m; n0;m0
vary over the set of �nite sequences of natural numbers, is model-

complete.

Proof. | It suÆces to show that under the above hypothesis on R,

hN; <;Ri is a model of a theory T of the form given above.

Choose n(I) = n0 such that 8n > n0 (rn+1 � rn) > maxfm;m0g. So, the
following axioms hold in that structure:

8a8b (n(I) < a < b ^ :I0;0;n0;m0(a; b) ! b 6 S(�R(a)))

8a8b (n(I) < a < b! :Im;n;m0;n0(a; b)), if fm;ng 6= f0g. 2
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Added in proof: An expanded version of the �rst part of this article will

appear in the Journal of Symbolic Logic.
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